Object Level Depth Reconstruction for Category Level 6D Object Pose Estimation from Monocular RGB Image

被引:5
|
作者
Fan, Zhaoxin [1 ]
Song, Zhenbo [2 ]
Xu, Jian [4 ]
Wang, Zhicheng [4 ]
Wu, Kejian [4 ]
Liu, Hongyan [3 ]
He, Jun [1 ]
机构
[1] Renmin Univ China, Sch Informat, Key Lab Data Engn & Knowledge Engn MOE, Beijing 100872, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Tsinghua Univ, Dept Management Sci & Engn, Beijing 100084, Peoples R China
[4] Nreal, Beijing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Category-level 6D pose estimation; Object-level depth; Position hints; Decoupled depth reconstruction;
D O I
10.1007/978-3-031-20086-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, RGBD-based category-level 6D object pose estimation has achieved promising improvement in performance, however, the requirement of depth information prohibits broader applications. In order to relieve this problem, this paper proposes a novel approach named Object Level Depth reconstruction Network (OLD-Net) taking only RGB images as input for category-level 6D object pose estimation. We propose to directly predict object-level depth from a monocular RGB image by deforming the category-level shape prior into object-level depth and the canonical NOCS representation. Two novel modules named Normalized Global Position Hints (NGPH) and Shape-aware Decoupled Depth Reconstruction (SDDR) module are introduced to learn high fidelity object-level depth and delicate shape representations. At last, the 6D object pose is solved by aligning the predicted canonical representation with the back-projected object-level depth. Extensive experiments on the challenging CAMERA25 and REAL275 datasets indicate that our model, though simple, achieves state-of-the-art performance.
引用
收藏
页码:220 / 236
页数:17
相关论文
共 50 条
  • [1] Category-Level 6D Object Pose Recovery in Depth Images
    Sahin, Caner
    Kim, Tae-Kyun
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 665 - 681
  • [2] Hybrid 6D Object Pose Estimation from the RGB Image
    Staszak, Rafal
    Belter, Dominik
    [J]. ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 541 - 549
  • [3] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [4] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56
  • [5] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [6] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    [J]. Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [7] GSNet: Model Reconstruction Network for Category-level 6D Object Pose and Size Estimation
    Liu, Penglei
    Zhang, Qieshi
    Cheng, Jun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2898 - 2904
  • [8] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646
  • [9] ACR-Pose: Adversarial Canonical Representation Reconstruction Network for Category Level 6D Object Pose Estimation
    Fan, Zhaoxin
    Song, Zhenbo
    Wang, Zhicheng
    Xu, Jian
    Wu, Kejian
    Liu, Hongyan
    He, Jun
    [J]. PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 55 - 63
  • [10] Attention-guided RGB-D Fusion Network for Category-level 6D Object Pose Estimation
    Wang, Hao
    Li, Weiming
    Kim, Jiyeon
    Wang, Qiang
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10651 - 10658