Feasibility of Using Pseudo-Continuous Arterial Spin Labeling Perfusion in a Geriatric Population at 1.5 Tesla

被引:11
|
作者
Sigurdsson, Sigurdur [1 ]
Forsberg, Lars [2 ]
Aspelund, Thor [1 ,2 ]
van der Geest, Rob J. [3 ]
van Buchem, Mark A. [3 ]
Launer, Lenore J. [4 ]
Gudnason, Vilmundur [1 ,2 ]
van Osch, Matthias J. [3 ]
机构
[1] Iceland Heart Assoc, Kopavogur, Iceland
[2] Univ Iceland, Reykjavik, Iceland
[3] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[4] NIA, Lab Epidemiol Demog & Biometry, NIH, Bethesda, MD 20892 USA
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
CEREBRAL-BLOOD-FLOW; ELDERLY SUBJECTS; 3.0; T; REPRODUCIBILITY; MRI; RELIABILITY; BRAIN; AGE; LOCALIZATION; RISK;
D O I
10.1371/journal.pone.0144743
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives To evaluate the feasibility of using pseudo-continuous arterial spin labeling (pCASL) perfusion in a geriatric population at 1.5-Tesla. Materials and Methods In 17 participants (mean age 78.8 +/- 1.63 years) we assessed; 1) inter-session repeatability and reliability of resting state perfusion in 27 brain regions; 2) brain activation using finger-tapping as a means to evaluate the ability to detect flow differences; 3) reliability by comparing cerebral blood flow (CBF) with pCASL to CBF with phase contrast (PC-MR). Results The CBF (mean +/- standard deviation (SD)) for the whole brain grey matter (GM) was 40.6 +/- 8.4 and 41.4 +/- 8.7 ml/100g/min for the first and second scan respectively. The within-subject standard deviation (SDw), the repeatability index (RI) and intra-class correlation coefficient (ICC) across the 27 regions ranged from 1.1 to 7.9, 2.2 to 15.5 and 0.35 to 0.98 respectively. For whole brain GM the SDw, RI and ICC were 1.6, 3.2 and 0.96 respectively. The between-subject standard deviation (SDB) was larger than the SDw for all regions. Comparison of CBF at rest and activation on a voxel level showed significantly higher perfusion during finger tapping in the motor-and somatosensory regions. The mean CBF for whole brain GM was 40.6 +/- 8.4 ml/100g/min at rest and 42.6 +/- 8.6 ml/100g/min during activation. Finally the reliability of pCASL against the reference standard of PC-MR was high (ICC = 0.80). The mean CBF for whole brain measured with PC-MRI was 54.3 +/- 10.1 ml/100g/min and 38.3 +/- 7.8 ml/100g/min with pCASL. Conclusions The results demonstrate moderate to high levels of repeatability and reliability for most brain regions, comparable to what has been reported for younger populations. The performance of pCASL at 1.5-Tesla shows that region-specific perfusion measurements with this technique are feasible in studies of a geriatric population.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Cerebral perfusion alterations in patients with trigeminal neuralgia as measured by pseudo-continuous arterial spin labeling
    Zhou, Qianling
    Li, Meng
    Fan, Qisen
    Chen, Feng
    Jiang, Guihua
    Wang, Tianyue
    He, Qinmeng
    Fu, Shishun
    Yin, Yi
    Lin, Jinzhi
    Yan, Jianhao
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [12] Characterization of Skull Base Lesions Using Pseudo-Continuous Arterial Spin Labeling
    B. Geerts
    D. Leclercq
    S. Tezenas du Montcel
    B. Law-ye
    S. Gerber
    D. Bernardeschi
    D. Galanaud
    D. Dormont
    N. Pyatigorskaya
    Clinical Neuroradiology, 2019, 29 : 75 - 86
  • [13] Characterization of Skull Base Lesions Using Pseudo-Continuous Arterial Spin Labeling
    Geerts, B.
    Leclercq, D.
    du Montcel, S. Tezenas
    Law-ye, B.
    Gerber, S.
    Bernardeschi, D.
    Galanaud, D.
    Dormont, D.
    Pyatigorskaya, N.
    CLINICAL NEURORADIOLOGY, 2019, 29 (01) : 75 - 86
  • [14] Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla
    Wang, JJ
    Alsop, DC
    Li, L
    Listerud, J
    Gonzalez-At, JB
    Schnall, MD
    Detre, JA
    MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) : 242 - 254
  • [15] Characterization of Pseudo-Continuous Arterial Spin Labeling: Simulations and Experimental Validation
    Lorenz, Kathrin
    Mildner, Toralf
    Schlumm, Torsten
    Moeller, Harald E.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (03) : 1638 - 1649
  • [16] Real-Time Functional MRI Using Pseudo-Continuous Arterial Spin Labeling
    Hernandez-Garcia, Luis
    Jahanian, Hesamoddin
    Greenwald, Mark K.
    Zubieta, Jon-Kar
    Peltier, Scott J.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (06) : 1570 - 1577
  • [17] Cerebral Blood Flow Quantification in Swine Using Pseudo-Continuous Arterial Spin Labeling
    Johnston, Megan E.
    Zheng, Zhenlin
    Maldjian, Joseph A.
    Whitlow, Christopher T.
    Morykwas, Michael J.
    Jung, Youngkyoo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (05) : 1111 - 1118
  • [18] Acoustic noise reduction in pseudo-continuous arterial spin labeling (pCASL)
    Johan N. van der Meer
    Dennis F. R. Heijtel
    Guus van Hest
    Geert-Jan Plattèl
    Matthijs J. P. van Osch
    Eus J. W. van Someren
    Ed T. vanBavel
    Aart J. Nederveen
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2014, 27 : 269 - 276
  • [19] Robust estimation of quantitative perfusion from multi-phase pseudo-continuous arterial spin labeling
    Msayib, Y.
    Craig, M.
    Simard, M. A.
    Larkin, J. R.
    Shin, D. D.
    Liu, T. T.
    Sibson, N. R.
    Okell, T. W.
    Chappell, M. A.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (03) : 815 - 829
  • [20] Pseudo-continuous arterial spin labeling MRI study of schizophrenic patients
    Ota, Miho
    Ishikawa, Masanori
    Sato, Noriko
    Okazaki, Mitsutoshi
    Maikusa, Norihide
    Hori, Hiroaki
    Hattori, Kotaro
    Teraishi, Toshiya
    Ito, Kimiteru
    Kunugi, Hiroshi
    SCHIZOPHRENIA RESEARCH, 2014, 154 (1-3) : 113 - 118