Feasibility of Using Pseudo-Continuous Arterial Spin Labeling Perfusion in a Geriatric Population at 1.5 Tesla

被引:11
|
作者
Sigurdsson, Sigurdur [1 ]
Forsberg, Lars [2 ]
Aspelund, Thor [1 ,2 ]
van der Geest, Rob J. [3 ]
van Buchem, Mark A. [3 ]
Launer, Lenore J. [4 ]
Gudnason, Vilmundur [1 ,2 ]
van Osch, Matthias J. [3 ]
机构
[1] Iceland Heart Assoc, Kopavogur, Iceland
[2] Univ Iceland, Reykjavik, Iceland
[3] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[4] NIA, Lab Epidemiol Demog & Biometry, NIH, Bethesda, MD 20892 USA
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
CEREBRAL-BLOOD-FLOW; ELDERLY SUBJECTS; 3.0; T; REPRODUCIBILITY; MRI; RELIABILITY; BRAIN; AGE; LOCALIZATION; RISK;
D O I
10.1371/journal.pone.0144743
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives To evaluate the feasibility of using pseudo-continuous arterial spin labeling (pCASL) perfusion in a geriatric population at 1.5-Tesla. Materials and Methods In 17 participants (mean age 78.8 +/- 1.63 years) we assessed; 1) inter-session repeatability and reliability of resting state perfusion in 27 brain regions; 2) brain activation using finger-tapping as a means to evaluate the ability to detect flow differences; 3) reliability by comparing cerebral blood flow (CBF) with pCASL to CBF with phase contrast (PC-MR). Results The CBF (mean +/- standard deviation (SD)) for the whole brain grey matter (GM) was 40.6 +/- 8.4 and 41.4 +/- 8.7 ml/100g/min for the first and second scan respectively. The within-subject standard deviation (SDw), the repeatability index (RI) and intra-class correlation coefficient (ICC) across the 27 regions ranged from 1.1 to 7.9, 2.2 to 15.5 and 0.35 to 0.98 respectively. For whole brain GM the SDw, RI and ICC were 1.6, 3.2 and 0.96 respectively. The between-subject standard deviation (SDB) was larger than the SDw for all regions. Comparison of CBF at rest and activation on a voxel level showed significantly higher perfusion during finger tapping in the motor-and somatosensory regions. The mean CBF for whole brain GM was 40.6 +/- 8.4 ml/100g/min at rest and 42.6 +/- 8.6 ml/100g/min during activation. Finally the reliability of pCASL against the reference standard of PC-MR was high (ICC = 0.80). The mean CBF for whole brain measured with PC-MRI was 54.3 +/- 10.1 ml/100g/min and 38.3 +/- 7.8 ml/100g/min with pCASL. Conclusions The results demonstrate moderate to high levels of repeatability and reliability for most brain regions, comparable to what has been reported for younger populations. The performance of pCASL at 1.5-Tesla shows that region-specific perfusion measurements with this technique are feasible in studies of a geriatric population.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Assessment of Renal Perfusion in Transplanted Kidney Patients Using Pseudo-Continuous Arterial Spin Labeling with Multiple Post-Labeling Delays
    Ahn, Hyun-Seo
    Yu, Hee Chul
    Kwak, Hyo Sung
    Park, Sung-Hong
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 130
  • [22] Acoustic noise reduction in pseudo-continuous arterial spin labeling (pCASL)
    van der Meer, Johan N.
    Heijtel, Dennis F. R.
    van Hest, Guus
    Plattel, Geert-Jan
    van Osch, Matthijs J. P.
    van Someren, Eus J. W.
    vanBavel, Ed T.
    Nederveen, Aart J.
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2014, 27 (03) : 269 - 276
  • [23] Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI
    Qu, Yaoming
    Kong, Dexia
    Wen, Haitao
    Ou, Xiaochan
    Rui, Qihong
    Wang, Xianlong
    Lin, Doris D.
    Qin, Qin
    Wen, Zhibo
    EUROPEAN RADIOLOGY, 2022, 32 (05) : 2976 - 2987
  • [24] Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI
    Yaoming Qu
    Dexia Kong
    Haitao Wen
    Xiaochan Ou
    Qihong Rui
    Xianlong Wang
    Doris D. Lin
    Qin Qin
    Zhibo Wen
    European Radiology, 2022, 32 : 2976 - 2987
  • [25] Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion
    Gevers, Sanna
    van Osch, Matthias J.
    Bokkers, Reinoud P. H.
    Kies, Dennis A.
    Teeuwisse, Wouter M.
    Majoie, Charles B.
    Hendrikse, Jeroen
    Nederveen, Aart J.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2011, 31 (08): : 1706 - 1715
  • [26] Hybrid B1+-shimming and gradient adaptions for improved pseudo-continuous arterial spin labeling at 7 Tesla
    Meixner, Christian R.
    Eisen, Christian K.
    Schmitter, Sebastian
    Muller, Max
    Herrler, Juergen
    Hensel, Bernhard
    Doerfler, Arnd
    Uder, Michael
    Nagel, Armin M.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (01) : 207 - 219
  • [27] Practical considerations for territorial perfusion mapping in the cerebral circulation using super-selective pseudo-continuous arterial spin labeling
    Schollenberger, Jonas
    Figueroa, C. Alberto
    Nielsen, Jon-Fredrik
    Hernandez-Garcia, Luis
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (02) : 492 - 504
  • [28] Agreement of Resting Brain Perfusion using Two Different Pseudo-Continuous Arterial Spin Labeling Sequences and the Associations with Lipid Biomarkers
    Decker, Kevin
    Sanjana, Faria
    Rizzi, Nick
    Kramer, Mary
    Cerjanic, Alexander
    Johnson, Curtis
    Martens, Christopher
    PHYSIOLOGY, 2023, 38
  • [29] Spatial-temporal perfusion patterns of the human liver assessed by pseudo-continuous arterial spin labeling MRI
    Martirosian, Petros
    Pohmann, Rolf
    Schraml, Christina
    Schwartz, Martin
    Kuestner, Thomas
    Schwenzer, Nina Franziska
    Scheffler, Klaus
    Nikolaou, Konstantin
    Schick, Fritz
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (02): : 173 - 183
  • [30] In vivo visualization of the PICA perfusion territory with super-selective pseudo-continuous arterial spin labeling MRI
    Hartkamp, Nolan S.
    De Cocker, Laurens J.
    Helle, Michael
    van Osch, Matthias J. P.
    Kappelle, L. Jaap
    Bokkers, Reinoud P. H.
    Hendrikse, Jeroen
    NEUROIMAGE, 2013, 83 : 58 - 65