Numerical Solution of Evolutionary Integral Equations with Completely Monotonic Kernel by Runge-Kutta Convolution Quadrature

被引:2
|
作者
Xu, Da [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary integral equation; completely monotonic kernel; time discretization; Runge-Kutta convolution quadrature; error estimates; DISCONTINUOUS GALERKIN METHOD; VOLTERRA-EQUATIONS; DIFFUSION EQUATION; INTEGRODIFFERENTIAL EQUATION; FRACTIONAL DIFFUSION; TIME DISCRETIZATION; PARABOLIC EQUATIONS; STABILITY;
D O I
10.1002/num.21896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical solutions of the initial boundary value problems for the Volterra-type evolutionary integal equations, in which the integral operator is a convolution product of a completely monotonic kernel and a positive definite operator, such as an elliptic partial-differential operator. The equation is discretized in time by the Runge-Kutta convolution quadrature. Error estimates are derived and numerical experiments reported. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 105-142, 2015
引用
收藏
页码:105 / 142
页数:38
相关论文
共 50 条
  • [1] RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE
    LUBICH, C
    OSTERMANN, A
    MATHEMATICS OF COMPUTATION, 1993, 60 (201) : 105 - 131
  • [2] Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature
    Ballani, J.
    Banjai, L.
    Sauter, S.
    Veit, A.
    NUMERISCHE MATHEMATIK, 2013, 123 (04) : 643 - 670
  • [3] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [4] Runge-Kutta Based Generalized Convolution Quadrature
    Lopez-Fernandez, Maria
    Sauter, Stefan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [5] A Hybrid Runge-Kutta Convolution Quadrature-Temporal Galerkin Approach to the Solution of the Time Domain Integral Equations of Electromagnet ics
    Weile, Daniel S.
    2014 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2014, : 391 - 394
  • [6] Runge-Kutta convolution quadrature methods for well-posed equations with memory
    Calvo, M. P.
    Cuesta, E.
    Palencia, C.
    NUMERISCHE MATHEMATIK, 2007, 107 (04) : 589 - 614
  • [7] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779
  • [8] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101
  • [9] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188
  • [10] Runge-Kutta convolution quadrature based on Gauss methods
    Banjai, Lehel
    Ferrari, Matteo
    NUMERISCHE MATHEMATIK, 2024, : 1719 - 1750