Runge-Kutta convolution quadrature methods for well-posed equations with memory

被引:28
|
作者
Calvo, M. P. [1 ]
Cuesta, E. [1 ]
Palencia, C. [1 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada, Valladolid, Spain
关键词
D O I
10.1007/s00211-007-0107-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Runge-Kutta based convolution quadrature methods for abstract, well-posed, linear, and homogeneous Volterra equations, non necessarily of sectorial type, are developed. A general representation of the numerical solution in terms of the continuous one is given. The error and stability analysis is based on this representation, which, for the particular case of the backward Euler method, also shows that the numerical solution inherits some interesting qualitative properties, such as positivity, of the exact solution. Numerical illustrations are provided.
引用
收藏
页码:589 / 614
页数:26
相关论文
共 50 条
  • [1] Runge–Kutta convolution quadrature methods for well-posed equations with memory
    M. P. Calvo
    E. Cuesta
    C. Palencia
    [J]. Numerische Mathematik, 2007, 107 : 589 - 614
  • [2] RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE
    LUBICH, C
    OSTERMANN, A
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (201) : 105 - 131
  • [3] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779
  • [4] Runge-Kutta convolution quadrature based on Gauss methods
    Banjai, Lehel
    Ferrari, Matteo
    [J]. NUMERISCHE MATHEMATIK, 2024,
  • [5] Generalized convolution quadrature based on Runge-Kutta methods
    M. Lopez-Fernandez
    S. Sauter
    [J]. Numerische Mathematik, 2016, 133 : 743 - 779
  • [6] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    [J]. BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [7] Runge-Kutta Based Generalized Convolution Quadrature
    Lopez-Fernandez, Maria
    Sauter, Stefan
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [8] Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems
    Egger, H.
    Schmidt, K.
    Shashkov, V
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [9] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101
  • [10] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188