Runge-Kutta Based Generalized Convolution Quadrature

被引:0
|
作者
Lopez-Fernandez, Maria [1 ]
Sauter, Stefan [2 ]
机构
[1] Univ Malaga, Dept Math Anal, Campus Teatinos S-N, E-29071 Malaga, Spain
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
boundary integral equations; convolution equations; convolution quadrature; variable steps; contour integral methods; DISCRETIZED OPERATIONAL CALCULUS;
D O I
10.1063/1.4951754
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the Runge-Kutta generalized convolution quadrature (gCQ) with variable time steps for the numerical solution of convolution equations for time and space-time problems. We present the main properties of the method and a convergence result.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779
  • [2] Generalized convolution quadrature based on Runge-Kutta methods
    M. Lopez-Fernandez
    S. Sauter
    [J]. Numerische Mathematik, 2016, 133 : 743 - 779
  • [3] Runge-Kutta convolution quadrature based on Gauss methods
    Banjai, Lehel
    Ferrari, Matteo
    [J]. NUMERISCHE MATHEMATIK, 2024,
  • [4] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    [J]. BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [5] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101
  • [6] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188
  • [7] RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE
    LUBICH, C
    OSTERMANN, A
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (201) : 105 - 131
  • [8] Runge-Kutta convolution quadrature for operators arising in wave propagation
    Banjai, Lehel
    Lubich, Christian
    Melenk, Jens Markus
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 1 - 20
  • [9] Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems
    Egger, H.
    Schmidt, K.
    Shashkov, V
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [10] Runge-Kutta convolution quadrature methods for well-posed equations with memory
    Calvo, M. P.
    Cuesta, E.
    Palencia, C.
    [J]. NUMERISCHE MATHEMATIK, 2007, 107 (04) : 589 - 614