Runge-Kutta Based Generalized Convolution Quadrature

被引:0
|
作者
Lopez-Fernandez, Maria [1 ]
Sauter, Stefan [2 ]
机构
[1] Univ Malaga, Dept Math Anal, Campus Teatinos S-N, E-29071 Malaga, Spain
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
boundary integral equations; convolution equations; convolution quadrature; variable steps; contour integral methods; DISCRETIZED OPERATIONAL CALCULUS;
D O I
10.1063/1.4951754
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the Runge-Kutta generalized convolution quadrature (gCQ) with variable time steps for the numerical solution of convolution equations for time and space-time problems. We present the main properties of the method and a convergence result.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A GENERALIZED-STRUCTURE APPROACH TO ADDITIVE RUNGE-KUTTA METHODS
    Sandu, Adrian
    Guenther, Michael
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 17 - 42
  • [42] Coherent Chaotic Communication Using Generalized Runge-Kutta Method
    Babkin, Ivan
    Rybin, Vyacheslav
    Andreev, Valery
    Karimov, Timur
    Butusov, Denis
    [J]. MATHEMATICS, 2024, 12 (07)
  • [43] CONVERGENCE AND STABILITY AREAS IN GENERALIZED IMPLICIT RUNGE-KUTTA METHODS
    FUCHS, PM
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T408 - T409
  • [44] S-STABILITY PROPERTIES FOR GENERALIZED RUNGE-KUTTA METHODS
    VERWER, JG
    [J]. NUMERISCHE MATHEMATIK, 1977, 27 (04) : 359 - 370
  • [45] A New Symplectic Runge-Kutta Method Generated By Radau-Right Quadrature
    Tan, Jiabo
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1064 - 1068
  • [46] Runge–Kutta convolution quadrature methods for well-posed equations with memory
    M. P. Calvo
    E. Cuesta
    C. Palencia
    [J]. Numerische Mathematik, 2007, 107 : 589 - 614
  • [47] A Hybrid Runge-Kutta Convolution Quadrature-Temporal Galerkin Approach to the Solution of the Time Domain Integral Equations of Electromagnet ics
    Weile, Daniel S.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2014, : 391 - 394
  • [48] A generalization of the Runge-Kutta iteration
    Haelterman, R.
    Vierendeels, J.
    Van Heule, D.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) : 152 - 167
  • [49] A MODIFIED RUNGE-KUTTA METHOD
    CHAI, AS
    [J]. SIMULATION, 1968, 10 (05) : 221 - &
  • [50] Runge-Kutta methods and renormalization
    Brouder, C
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2000, 12 (03): : 521 - 534