RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE

被引:3
|
作者
LUBICH, C [1 ]
OSTERMANN, A [1 ]
机构
[1] SWISS FED INST TECHNOL, SEMINAR ANGEW MATH, CH-8092 ZURICH, SWITZERLAND
关键词
PARABOLIC EQUATIONS; NONSTATIONARY NAVIER-STOKES EQUATION; RUNGE-KUTTA TIME DISCRETIZATION; CONVOLUTION INTEGRALS; NUMERICAL QUADRATURE;
D O I
10.2307/2153158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Runge-Kutta methods as convolution quadratures. In a different context, these can be used as efficient computational methods for the approximation of convolution integrals and integral equations. They use the Laplace transform of the convolution kernel via a discrete operational calculus.
引用
收藏
页码:105 / 131
页数:27
相关论文
共 50 条
  • [1] Runge-Kutta convolution quadrature based on Gauss methods
    Banjai, Lehel
    Ferrari, Matteo
    [J]. NUMERISCHE MATHEMATIK, 2024,
  • [2] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779
  • [3] Generalized convolution quadrature based on Runge-Kutta methods
    M. Lopez-Fernandez
    S. Sauter
    [J]. Numerische Mathematik, 2016, 133 : 743 - 779
  • [4] Runge-Kutta convolution quadrature methods for well-posed equations with memory
    Calvo, M. P.
    Cuesta, E.
    Palencia, C.
    [J]. NUMERISCHE MATHEMATIK, 2007, 107 (04) : 589 - 614
  • [5] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    [J]. BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [6] Runge-Kutta Based Generalized Convolution Quadrature
    Lopez-Fernandez, Maria
    Sauter, Stefan
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [7] Convergence of Runge-Kutta methods for nonlinear parabolic equations
    Ostermann, A
    Thalhammer, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) : 367 - 380
  • [8] Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems
    Egger, H.
    Schmidt, K.
    Shashkov, V
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [9] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101
  • [10] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188