Numerical Solution of Evolutionary Integral Equations with Completely Monotonic Kernel by Runge-Kutta Convolution Quadrature

被引:2
|
作者
Xu, Da [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary integral equation; completely monotonic kernel; time discretization; Runge-Kutta convolution quadrature; error estimates; DISCONTINUOUS GALERKIN METHOD; VOLTERRA-EQUATIONS; DIFFUSION EQUATION; INTEGRODIFFERENTIAL EQUATION; FRACTIONAL DIFFUSION; TIME DISCRETIZATION; PARABOLIC EQUATIONS; STABILITY;
D O I
10.1002/num.21896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical solutions of the initial boundary value problems for the Volterra-type evolutionary integal equations, in which the integral operator is a convolution product of a completely monotonic kernel and a positive definite operator, such as an elliptic partial-differential operator. The equation is discretized in time by the Runge-Kutta convolution quadrature. Error estimates are derived and numerical experiments reported. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 105-142, 2015
引用
收藏
页码:105 / 142
页数:38
相关论文
共 50 条
  • [31] Runge-Kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional integro-differential equations
    Zhang, Gengen
    Zhu, Rui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84 (84):
  • [32] Runge–Kutta convolution quadrature methods for well-posed equations with memory
    M. P. Calvo
    E. Cuesta
    C. Palencia
    Numerische Mathematik, 2007, 107 : 589 - 614
  • [33] On the existence of solution of stage equations in implicit Runge-Kutta methods
    Calvo, M
    Montijano, JI
    Gonzalez-Pinto, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 111 (1-2) : 25 - 36
  • [34] On the existence of solution of stage equations in implicit Runge-Kutta methods
    Calvo, M.
    Montijano, J.I.
    Gonzalez-Pinto, S.
    Journal of Computational and Applied Mathematics, 1999, 111 (01): : 25 - 36
  • [35] Highly stable multistep Runge-Kutta methods for Volterra integral equations
    Wen, Jiao
    Xiao, Aiguo
    Huang, Chengming
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [36] Runge-Kutta methods for the numerical solution of stiff semilinear systems
    Calvo, M
    González-Pinto, S
    Montijano, JI
    BIT, 2000, 40 (04): : 611 - 639
  • [37] Runge-Kutta Methods for the Numerical Solution of Stiff Semilinear Systems
    M. Calvo
    S. González-Pinto
    J. I. Montijano
    BIT Numerical Mathematics, 2000, 40 : 611 - 639
  • [38] Implicit Runge-Kutta Methods for the Discretization of Time Domain Integral Equations
    Wang, Xiaobo
    Weile, Daniel S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (12) : 4651 - 4663
  • [39] Singly TASE Operators for the Numerical Solution of Stiff Differential Equations by Explicit Runge-Kutta Schemes
    Calvo, Manuel
    Fu, Lin
    Montijano, Juan I.
    Randez, Luis
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (01)
  • [40] Numerical Solution of Fuzzy Differential Equations of 2nd-Order by Runge-Kutta Method
    Parandin, N.
    JOURNAL OF MATHEMATICAL EXTENSION, 2013, 7 (03) : 47 - 62