On some infinite families of congruences for [j, k]-partitions into even parts distinct

被引:0
|
作者
Naika, M. S. Mahadeva [1 ]
Harishkumar, T. [2 ]
Veeranayaka, T. N. [2 ]
机构
[1] Bengaluru City Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
[2] Bangalore Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
来源
关键词
Congruences; Partitions with even parts distinct; j k]-partitions; ARITHMETIC PROPERTIES; PARTITIONS; BIPARTITIONS; NUMBER;
D O I
10.1007/s13226-021-00046-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the partition function ped(j,k)(n), the number of [j, k]-partitions of n into even parts distinct, where none of the parts are congruent to j (mod k) (where k > j >= 1). We obtain many infinite families of congruences modulo powers of 2 for ped(3,6)(n) and congruences modulo powers of 2 and 3 for ped(9,18)(n). For example, for all n >= 0 and alpha, beta >= 0, ped(9),(18) (2 . 3(4 alpha+4) . 7(2 beta+1) (7n + s) + 11 . 3(4 alpha+3) . 7(2 beta+1) + 1/4) equivalent to 0 (mod 16), where s = 0, 2, 3, 4, 5, 6.
引用
收藏
页码:1038 / 1054
页数:17
相关论文
共 50 条
  • [31] Identities involving partitions with distinct even parts and 4-regular partitions
    Andrews, George E.
    El Bachraoui, Mohamed
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
  • [32] Elementary proofs of infinite families of congruences for Merca's cubic partitions
    da Silva, Robson
    Sellers, James A.
    RAMANUJAN JOURNAL, 2023, 62 (04): : 925 - 933
  • [33] Infinite families of congruences modulo 9 for 9-regular partitions
    Chen, Na
    Li, Xiaorong
    Yao, Olivia X. M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02): : 163 - 172
  • [34] New congruences modulo 5 and 9 for partitions with odd parts distinct
    Fang, Houqing
    Xue, Fanggang
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2020, 43 (11) : 1573 - 1586
  • [35] A CONJECTURE OF MERCA ON CONGRUENCES MODULO POWERS OF 2 FOR PARTITIONS INTO DISTINCT PARTS
    Du, Julia Q. D.
    Tang, Dazhao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 26 - 36
  • [36] Ramanujan-type congruences modulo 4 for partitions into distinct parts
    Merca, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (03): : 185 - 199
  • [37] On the number of partitions of n into exactly m parts whose even parts are distinct
    Namphaisaal, Dhanasin
    Srichan, Teerapat
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [38] SOME PARTITIONS WHERE EVEN PARTS APPEAR TWICE
    Patkowski, Alexander E.
    ARS COMBINATORIA, 2009, 92 : 263 - 270
  • [39] Infinite families of congruences modulo 7 for broken 3-diamond partitions
    Ernest X. W. Xia
    The Ramanujan Journal, 2016, 40 : 389 - 403
  • [40] ON SOME PARTITIONS WHERE EVEN PARTS DO NOT REPEAT
    Patkowski, Alexander E.
    DEMONSTRATIO MATHEMATICA, 2009, 42 (02) : 259 - 263