On some infinite families of congruences for [j, k]-partitions into even parts distinct

被引:0
|
作者
Naika, M. S. Mahadeva [1 ]
Harishkumar, T. [2 ]
Veeranayaka, T. N. [2 ]
机构
[1] Bengaluru City Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
[2] Bangalore Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
来源
关键词
Congruences; Partitions with even parts distinct; j k]-partitions; ARITHMETIC PROPERTIES; PARTITIONS; BIPARTITIONS; NUMBER;
D O I
10.1007/s13226-021-00046-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the partition function ped(j,k)(n), the number of [j, k]-partitions of n into even parts distinct, where none of the parts are congruent to j (mod k) (where k > j >= 1). We obtain many infinite families of congruences modulo powers of 2 for ped(3,6)(n) and congruences modulo powers of 2 and 3 for ped(9,18)(n). For example, for all n >= 0 and alpha, beta >= 0, ped(9),(18) (2 . 3(4 alpha+4) . 7(2 beta+1) (7n + s) + 11 . 3(4 alpha+3) . 7(2 beta+1) + 1/4) equivalent to 0 (mod 16), where s = 0, 2, 3, 4, 5, 6.
引用
收藏
页码:1038 / 1054
页数:17
相关论文
共 50 条
  • [21] Arithmetic properties of partitions with even parts distinct
    Andrews, George E.
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 169 - 181
  • [22] Arithmetic properties of partitions with even parts distinct
    George E. Andrews
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 23 : 169 - 181
  • [23] SOME NEW INFINITE FAMILIES OF CONGRUENCES MODULO 3 FOR OVERPARTITIONS INTO ODD PARTS
    Xia, Ernest X. W.
    COLLOQUIUM MATHEMATICUM, 2016, 142 (02) : 255 - 266
  • [24] On the combinatorics of the number of even parts in all partitions with distinct parts
    Li, Runqiao
    Wang, Andrew Y. Z.
    RAMANUJAN JOURNAL, 2021, 56 (02): : 721 - 727
  • [25] On the Number of Even Parts in All Partitions of n into Distinct Parts
    Andrews, George E.
    Merca, Mircea
    ANNALS OF COMBINATORICS, 2020, 24 (01) : 47 - 54
  • [26] Some congruences for(ℓ,k)-regular partitions
    Kathiravan, T.
    Srinivas, K.
    Sangale, Usha K.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2024, 39 (03)
  • [27] On the combinatorics of the number of even parts in all partitions with distinct parts
    Runqiao Li
    Andrew Y. Z. Wang
    The Ramanujan Journal, 2021, 56 : 721 - 727
  • [28] New relations for the number of partitions with distinct even parts
    Merca, Mircea
    JOURNAL OF NUMBER THEORY, 2017, 176 : 1 - 12
  • [29] SOME CONGRUENCES FOR K LINE PARTITIONS OF A NUMBER
    GANDHI, JM
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (02): : 179 - &
  • [30] Elementary proofs of infinite families of congruences for Merca’s cubic partitions
    Robson da Silva
    James A. Sellers
    The Ramanujan Journal, 2023, 62 : 925 - 933