Optimal Monotonicity-Preserving Perturbations of a Given Runge-Kutta Method

被引:5
|
作者
Higueras, Inmaculada [1 ]
Ketcheson, David I. [2 ]
Kocsis, Tihamer A. [3 ]
机构
[1] Univ Publ Navarra, Pamplona 31006, Spain
[2] KAUST, Thuwal 239556900, Saudi Arabia
[3] Szechenyi Istvan Univ, H-9026 Gyor, Hungary
关键词
Strong stability preserving; Monotonicity; Runge-Kutta methods; Time discretization; STRONG-STABILITY; SPATIAL DISCRETIZATIONS; SCHEMES; FORMULAS; ORDER; PAIR;
D O I
10.1007/s10915-018-0664-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Perturbed Runge-Kutta methods (also referred to as downwind Runge-Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge-Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.
引用
收藏
页码:1337 / 1369
页数:33
相关论文
共 50 条
  • [41] Strong Stability Preserving Properties of Composition Runge-Kutta Schemes
    Higueras, I
    Roldan, T.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 784 - 807
  • [42] Dense Output for Strong Stability Preserving Runge-Kutta Methods
    Ketcheson, David I.
    Loczi, Lajos
    Jangabylova, Aliya
    Kusmanov, Adil
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) : 944 - 958
  • [43] Partitioned Runge-Kutta methods as phase volume preserving integrators
    Suris, Y. B.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 220 (1-3):
  • [44] Invariants preserving schemes based on explicit Runge-Kutta methods
    Kojima, H.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1317 - 1337
  • [45] A METHOD FOR CONSTRUCTING GENERALIZED RUNGE-KUTTA METHODS
    SUGIURA, H
    TORII, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 38 (1-3) : 399 - 410
  • [46] Adversarial Attack Based on Runge-Kutta Method
    Wan C.
    Huang F.-J.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (05): : 2543 - 2565
  • [47] A quasi-randomized Runge-Kutta method
    Coulibaly, I
    Lécot, C
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 651 - 659
  • [48] CIRCLE TEST ON RUNGE-KUTTA INTEGRATION METHOD
    NORIMATSU, T
    DEIDO, T
    COMMUNICATIONS OF THE ACM, 1960, 3 (07) : 390 - 390
  • [49] Optimal Strong-Stability-Preserving Runge-Kutta Time Discretizations for Discontinuous Galerkin Methods
    Kubatko, Ethan J.
    Yeager, Benjamin A.
    Ketcheson, David I.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) : 313 - 344
  • [50] RUNGE-KUTTA METHOD WITH IMPLICIT COMPUTING STEP
    MANNSHARDT, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (04): : 251 - 253