Optimal Monotonicity-Preserving Perturbations of a Given Runge-Kutta Method

被引:5
|
作者
Higueras, Inmaculada [1 ]
Ketcheson, David I. [2 ]
Kocsis, Tihamer A. [3 ]
机构
[1] Univ Publ Navarra, Pamplona 31006, Spain
[2] KAUST, Thuwal 239556900, Saudi Arabia
[3] Szechenyi Istvan Univ, H-9026 Gyor, Hungary
关键词
Strong stability preserving; Monotonicity; Runge-Kutta methods; Time discretization; STRONG-STABILITY; SPATIAL DISCRETIZATIONS; SCHEMES; FORMULAS; ORDER; PAIR;
D O I
10.1007/s10915-018-0664-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Perturbed Runge-Kutta methods (also referred to as downwind Runge-Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge-Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.
引用
收藏
页码:1337 / 1369
页数:33
相关论文
共 50 条
  • [31] Contractivity/monotonicity for additive Runge-Kutta methods:: Inner product norms
    García-Celayeta, B
    Higueras, I
    Roldán, T
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (06) : 862 - 878
  • [32] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Inmaculada Higueras
    Journal of Scientific Computing, 2009, 39 : 115 - 128
  • [33] EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS
    Bresten, Christopher
    Gottlieb, Sigal
    Grant, Zachary
    Higgs, Daniel
    Ketcheson, David I.
    Nemeth, Adrian
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 747 - 769
  • [34] Partitioned Runge-Kutta methods as phase volume preserving integrators
    Suris, YB
    PHYSICS LETTERS A, 1996, 220 (1-3) : 63 - 69
  • [35] Pseudo-energy-preserving explicit Runge-Kutta methods
    de Leon, Gabriel A. Barrios
    Ketcheson, David I.
    Ranocha, Hendrik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) : 729 - 748
  • [36] Optimized strong stability preserving IMEX Runge-Kutta methods
    Higueras, Inmaculada
    Happenhofer, Natalie
    Koch, Othmar
    Kupka, Friedrich
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 116 - 140
  • [37] STRONG STABILITY PRESERVING INTEGRATING FACTOR RUNGE-KUTTA METHODS
    Isherwood, Leah
    Grant, Zachary J.
    Gottlieb, Sigal
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3276 - 3307
  • [38] Representations of Runge-Kutta methods and strong stability preserving methods
    Higueras, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 924 - 948
  • [39] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Higueras, Inmaculada
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) : 115 - 128
  • [40] Strong Stability Preserving Runge-Kutta and Linear Multistep Methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 4029 - 4062