Optimal Monotonicity-Preserving Perturbations of a Given Runge-Kutta Method

被引:5
|
作者
Higueras, Inmaculada [1 ]
Ketcheson, David I. [2 ]
Kocsis, Tihamer A. [3 ]
机构
[1] Univ Publ Navarra, Pamplona 31006, Spain
[2] KAUST, Thuwal 239556900, Saudi Arabia
[3] Szechenyi Istvan Univ, H-9026 Gyor, Hungary
关键词
Strong stability preserving; Monotonicity; Runge-Kutta methods; Time discretization; STRONG-STABILITY; SPATIAL DISCRETIZATIONS; SCHEMES; FORMULAS; ORDER; PAIR;
D O I
10.1007/s10915-018-0664-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Perturbed Runge-Kutta methods (also referred to as downwind Runge-Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge-Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.
引用
收藏
页码:1337 / 1369
页数:33
相关论文
共 50 条
  • [21] Positivity of an explicit Runge-Kutta method
    Khalsaraei, M. Mehdizadeh
    AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (04) : 1217 - 1223
  • [22] RUNGE-KUTTA METHOD OF ORDER 10
    HAIRER, E
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (01): : 47 - 59
  • [23] Open formula of Runge-Kutta method
    Podisuk, M
    Songprasert, K
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 315 - 317
  • [24] On one generalization of Runge-Kutta method
    Islamov, G. G.
    Kogan, Y., V
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (02): : 167 - 172
  • [25] STRUCTURE-PRESERVING EXPONENTIAL RUNGE-KUTTA METHODS
    Bhatt, Ashish
    Moore, Brian E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : A593 - A612
  • [26] Runge-Kutta discretizations of optimal control problems
    Hager, WW
    SYSTEM THEORY: MODELING, ANALYSIS, AND CONTROL, 2000, 518 : 233 - 244
  • [27] TRANSFORMED IMPLICIT RUNGE-KUTTA METHOD
    BUTCHER, JC
    JOURNAL OF THE ACM, 1979, 26 (04) : 731 - 738
  • [28] Numerically optimal Runge-Kutta pairs with interpolants
    Verner, J. H.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 383 - 396
  • [29] Runge-Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter
    Franquet, Erwin
    Perrier, Vincent
    COMPUTERS & FLUIDS, 2012, 65 : 2 - 7
  • [30] Some Embedded Pairs for Optimal Implicit Strong Stability Preserving Runge-Kutta Methods
    Fekete, Imre
    Horvath, Akos
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 359 - 364