Some Embedded Pairs for Optimal Implicit Strong Stability Preserving Runge-Kutta Methods

被引:0
|
作者
Fekete, Imre [1 ]
Horvath, Akos [2 ]
机构
[1] Eotvos Lorand Univ, Inst Math, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
[2] Eotvos Lorand Univ, Inst Math, Budapest, Hungary
关键词
D O I
10.1007/978-3-030-27550-1_45
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We construct specific embedded pairs for second and third order optimal strong stability preserving implicit Runge-Kutta methods with large absolute stability regions. These pairs offer adaptive implementation possibility for strong stability preserving (SSP) methods and maintain their inherent nonlinear stability properties, too.
引用
收藏
页码:359 / 364
页数:6
相关论文
共 50 条
  • [1] Embedded pairs for optimal explicit strong stability preserving Runge-Kutta methods
    Fekete, Imre
    Conde, Sidafa
    Shadid, John N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [2] Optimal implicit strong stability preserving Runge-Kutta methods
    Ketcheson, David I.
    Macdonald, Colin B.
    Gottlieb, Sigal
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (02) : 373 - 392
  • [3] Embedded pairs for optimal explicit strong stability preserving Runge–Kutta methods
    Fekete, Imre
    Conde, Sidafa
    Shadid, John N.
    Journal of Computational and Applied Mathematics, 2022, 412
  • [4] Representations of Runge-Kutta methods and strong stability preserving methods
    Higueras, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 924 - 948
  • [5] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shadid, John N.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 667 - 690
  • [6] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Inmaculada Higueras
    Journal of Scientific Computing, 2009, 39 : 115 - 128
  • [7] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods With High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shahid, John N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [8] Optimized strong stability preserving IMEX Runge-Kutta methods
    Higueras, Inmaculada
    Happenhofer, Natalie
    Koch, Othmar
    Kupka, Friedrich
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 116 - 140
  • [9] STRONG STABILITY PRESERVING INTEGRATING FACTOR RUNGE-KUTTA METHODS
    Isherwood, Leah
    Grant, Zachary J.
    Gottlieb, Sigal
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3276 - 3307
  • [10] EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS
    Bresten, Christopher
    Gottlieb, Sigal
    Grant, Zachary
    Higgs, Daniel
    Ketcheson, David I.
    Nemeth, Adrian
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 747 - 769