Some Embedded Pairs for Optimal Implicit Strong Stability Preserving Runge-Kutta Methods
被引:0
|
作者:
Fekete, Imre
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Math, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, HungaryEotvos Lorand Univ, Inst Math, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
Fekete, Imre
[1
]
Horvath, Akos
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Math, Budapest, HungaryEotvos Lorand Univ, Inst Math, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
Horvath, Akos
[2
]
机构:
[1] Eotvos Lorand Univ, Inst Math, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
[2] Eotvos Lorand Univ, Inst Math, Budapest, Hungary
We construct specific embedded pairs for second and third order optimal strong stability preserving implicit Runge-Kutta methods with large absolute stability regions. These pairs offer adaptive implementation possibility for strong stability preserving (SSP) methods and maintain their inherent nonlinear stability properties, too.
机构:
Oak Ridge Natl Lab, Computat Math Grp, Oak Ridge, TN 37830 USAUniv Massachusetts Dartmouth, Math Dept, 285 Old Westport Rd, N Dartmouth, MA 02747 USA
Grant, Zachary J.
Gottlieb, Sigal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts Dartmouth, Math Dept, 285 Old Westport Rd, N Dartmouth, MA 02747 USAUniv Massachusetts Dartmouth, Math Dept, 285 Old Westport Rd, N Dartmouth, MA 02747 USA