Dense Output for Strong Stability Preserving Runge-Kutta Methods

被引:2
|
作者
Ketcheson, David I. [1 ]
Loczi, Lajos [1 ]
Jangabylova, Aliya [2 ]
Kusmanov, Adil [2 ]
机构
[1] KAUST, Thuwal 239556900, Saudi Arabia
[2] Nazarbayev Univ, Astana, Kazakhstan
关键词
Runge-Kutta methods; SSP methods; Dense output; Continuous extension; DELAY-DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s10915-016-0331-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge-Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.
引用
收藏
页码:944 / 958
页数:15
相关论文
共 50 条
  • [1] Dense Output for Strong Stability Preserving Runge–Kutta Methods
    David I. Ketcheson
    Lajos Lóczi
    Aliya Jangabylova
    Adil Kusmanov
    [J]. Journal of Scientific Computing, 2017, 71 : 944 - 958
  • [2] Representations of Runge-Kutta methods and strong stability preserving methods
    Higueras, I
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 924 - 948
  • [3] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Inmaculada Higueras
    [J]. Journal of Scientific Computing, 2009, 39 : 115 - 128
  • [4] STRONG STABILITY PRESERVING INTEGRATING FACTOR RUNGE-KUTTA METHODS
    Isherwood, Leah
    Grant, Zachary J.
    Gottlieb, Sigal
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3276 - 3307
  • [5] Optimized strong stability preserving IMEX Runge-Kutta methods
    Higueras, Inmaculada
    Happenhofer, Natalie
    Koch, Othmar
    Kupka, Friedrich
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 116 - 140
  • [6] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Higueras, Inmaculada
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) : 115 - 128
  • [7] Optimal implicit strong stability preserving Runge-Kutta methods
    Ketcheson, David I.
    Macdonald, Colin B.
    Gottlieb, Sigal
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (02) : 373 - 392
  • [8] EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS
    Bresten, Christopher
    Gottlieb, Sigal
    Grant, Zachary
    Higgs, Daniel
    Ketcheson, David I.
    Nemeth, Adrian
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 747 - 769
  • [9] Strong Stability Preserving Runge-Kutta and Linear Multistep Methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 4029 - 4062
  • [10] Strong Stability Preserving General Linear Methods with Runge-Kutta Stability
    Califano, Giovanna
    Izzo, Giuseppe
    Jackiewicz, Zdzisaw
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 943 - 968