KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition

被引:629
|
作者
Yang, J [1 ]
Frangi, AF
Yang, JY
Zhang, D
Jin, Z
机构
[1] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[2] Pompeu Fabra Univ, Dept Technol, Computat Imaging Lab, E-08003 Barcelona, Spain
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Univ Autonoma Barcelona, Ctr Comp Vis, E-08193 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
kernel-based methods; subspace methods; principal component analysis (PCA); Fisher linear discriminant analysis (LDA or FLD); feature extraction; machine learning; face recognition; handwritten digit recognition;
D O I
10.1109/TPAMI.2005.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
  • [1] Essence of kernel Fisher discriminant: KPCA plus LDA
    Yang, J
    Jin, Z
    Yang, JY
    Zhang, D
    Frangi, AF
    [J]. PATTERN RECOGNITION, 2004, 37 (10) : 2097 - 2100
  • [2] Face Recognition Using Symbolic KPCA Plus Symbolic LDA in the Framework of Symbolic Data Analysis: Symbolic Kernel Fisher Discriminant Method
    Hiremath, P. S.
    Prabhakar, C. J.
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2008, 5259 : 982 - +
  • [3] A Generalized Kernel Fisher Discriminant Framework Used for Feature Extraction and Face Recognition
    Shi, Yuexiang
    Ren, Xiaoxue
    Yang, Saizhou
    Gong, Ping
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1487 - 1491
  • [4] A FISHER DISCRIMINANT FRAMEWORK BASED ON KERNEL ENTROPY COMPONENT ANALYSIS FOR FEATURE EXTRACTION AND EMOTION RECOGNITION
    Gao, Lei
    Qi, Lin
    Chen, Enqing
    Guan, Ling
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2014,
  • [5] Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition
    Di Zhang
    Jiazhong He
    Yun Zhao
    [J]. International Journal of Computational Intelligence Systems, 2013, 6 : 1059 - 1071
  • [6] Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition
    Zhang, Di
    He, Jiazhong
    Zhao, Yun
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2013, 6 (06) : 1059 - 1071
  • [7] Complete discriminant evaluation and feature extraction in kernel space for face recognition
    Jiang, Xudong
    Mandal, Bappaditya
    Kot, Alex
    [J]. MACHINE VISION AND APPLICATIONS, 2009, 20 (01) : 35 - 46
  • [8] Gabor Feature-based Complete Fisher Discriminant Framework for Facial Feature Extraction
    Zeng, Zhiqiang
    [J]. 2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 557 - 561
  • [9] Complete discriminant evaluation and feature extraction in kernel space for face recognition
    Xudong Jiang
    Bappaditya Mandal
    Alex Kot
    [J]. Machine Vision and Applications, 2009, 20 : 35 - 46
  • [10] The feature extraction of human face using Kernel Fisher Discriminant
    Chang, Qiuxiang
    [J]. 2007 International Symposium on Computer Science & Technology, Proceedings, 2007, : 21 - 23