Essence of kernel Fisher discriminant: KPCA plus LDA

被引:139
|
作者
Yang, J [1 ]
Jin, Z
Yang, JY
Zhang, D
Frangi, AF
机构
[1] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[2] Univ Zaragoza, Aragon Inst Engn Res, Comp Vis Grp, E-50018 Zaragoza, Spain
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Univ Autonoma Barcelona, Ctr Comp Vis, E-08193 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
kernel-based methods; Fisher linear discriminant analysis; principal component analysis; feature extraction; handwritten numeral recognition;
D O I
10.1016/j.patcog.2003.10.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the method of kernel Fisher discriminant (KFD) is analyzed and its nature is revealed, i.e., KFD is equivalent to kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). Based on this result, a more transparent KFD algorithm is proposed. That is, KPCA is first performed and then LDA is used for a second feature extraction in the KPCA-transformed space. Finally, the effectiveness of the proposed algorithm is verified using the CENPARMI handwritten numeral database. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2097 / 2100
页数:4
相关论文
共 50 条
  • [1] KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition
    Yang, J
    Frangi, AF
    Yang, JY
    Zhang, D
    Jin, Z
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (02) : 230 - 244
  • [2] Face Recognition Using Symbolic KPCA Plus Symbolic LDA in the Framework of Symbolic Data Analysis: Symbolic Kernel Fisher Discriminant Method
    Hiremath, P. S.
    Prabhakar, C. J.
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2008, 5259 : 982 - +
  • [3] Fisher plus Kernel criterion for discriminant analysis
    Yang, S
    Yan, SC
    Xu, D
    Tang, XO
    Zhang, C
    [J]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2, Proceedings, 2005, : 197 - 202
  • [4] Indefinite Kernel Fisher Discriminant
    Haasdonk, Bernard
    Pekalska, Elzbieta
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2052 - 2055
  • [5] Sparse Kernel Fisher Discriminant Analysis
    Xing, HJ
    Yang, YJ
    Wang, Y
    Hu, BG
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 824 - 830
  • [6] A reformative kernel Fisher discriminant analysis
    Xu, Y
    Yang, JY
    Yang, J
    [J]. PATTERN RECOGNITION, 2004, 37 (06) : 1299 - 1302
  • [7] Context quantization by kernel Fisher discriminant
    Xu, MT
    Wu, XL
    Fränti, P
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (01) : 169 - 177
  • [8] Learning kernel parameters for kernel Fisher discriminant analysis
    Liu, Jing
    Zhao, Feng
    Liu, Yi
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (09) : 1026 - 1031
  • [9] Infrared Point Target Detection with Fisher Linear Discriminant and Kernel Fisher Linear Discriminant
    Liu, Ruiming
    Zhi, Hongliang
    [J]. JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (12) : 1491 - 1502
  • [10] Infrared Point Target Detection with Fisher Linear Discriminant and Kernel Fisher Linear Discriminant
    Ruiming Liu
    Hongliang Zhi
    [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31 : 1491 - 1502