KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition

被引:631
|
作者
Yang, J [1 ]
Frangi, AF
Yang, JY
Zhang, D
Jin, Z
机构
[1] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[2] Pompeu Fabra Univ, Dept Technol, Computat Imaging Lab, E-08003 Barcelona, Spain
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Univ Autonoma Barcelona, Ctr Comp Vis, E-08193 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
kernel-based methods; subspace methods; principal component analysis (PCA); Fisher linear discriminant analysis (LDA or FLD); feature extraction; machine learning; face recognition; handwritten digit recognition;
D O I
10.1109/TPAMI.2005.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
  • [11] Global plus local: A complete framework for feature extraction and recognition
    Zhang, Di
    He, Jiazhong
    Zhao, Yun
    Luo, Zhongliang
    Du, Minghui
    PATTERN RECOGNITION, 2014, 47 (03) : 1433 - 1442
  • [12] Finger Knuckle Print Recognition Based on Gabor feature and KPCA plus LDA
    Swati, M. R.
    Ravishankar, M.
    2013 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMMUNICATION, CONTROL, SIGNAL PROCESSING AND COMPUTING APPLICATIONS (IEEE-C2SPCA-2013), 2013,
  • [13] A Novel Kernel Discriminant Feature Extraction Framework Based On Mapped Virtual Samples For Face Recognition
    Li, Sheng
    Jing, Xiaoyuan
    Zhang, David
    Yao, Yongfang
    Bian, Lusha
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [14] Fisher plus Kernel criterion for discriminant analysis
    Yang, S
    Yan, SC
    Xu, D
    Tang, XO
    Zhang, C
    2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2, Proceedings, 2005, : 197 - 202
  • [15] Kernel fisher discriminant analysis for palmprint recognition
    Wang, Yanxia
    Ruan, Qiuqi
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 457 - +
  • [16] A kernel Fisher discriminant classifier for speaker recognition
    Li, X.
    Zheng, Y.
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 344 - 348
  • [17] Robust kernel discriminant analysis and its application to feature extraction and recognition
    Liang, ZZ
    Zhang, D
    Shi, PF
    NEUROCOMPUTING, 2006, 69 (7-9) : 928 - 933
  • [18] Quaternion Kernel Fisher Discriminant Analysis for Feature-Level Multimodal Biometric Recognition
    WANG Zhifang
    ZHEN Jiaqi
    ZHU Fuzhen
    HAN Qi
    ChineseJournalofElectronics, 2020, 29 (06) : 1085 - 1092
  • [19] An optimal symmetrical null space criterion of Fisher discriminant for feature extraction and recognition
    Xiaoning Song
    Jingyu Yang
    Xiaojun Wu
    Xibei Yang
    Soft Computing, 2011, 15 : 281 - 293
  • [20] Feature Extraction Method Based on the Generalised Fisher Discriminant Criterion and Facial Recognition
    Yue-Fei Guo
    Ting-Ting Shu
    Jing-Yu Yang
    Shi-Jin Li
    Pattern Analysis & Applications, 2001, 4 : 61 - 66