KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition

被引:631
|
作者
Yang, J [1 ]
Frangi, AF
Yang, JY
Zhang, D
Jin, Z
机构
[1] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[2] Pompeu Fabra Univ, Dept Technol, Computat Imaging Lab, E-08003 Barcelona, Spain
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Univ Autonoma Barcelona, Ctr Comp Vis, E-08193 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
kernel-based methods; subspace methods; principal component analysis (PCA); Fisher linear discriminant analysis (LDA or FLD); feature extraction; machine learning; face recognition; handwritten digit recognition;
D O I
10.1109/TPAMI.2005.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
  • [41] Complete Kernel Fisher Discriminant analysis of gabor features with fractional power polynomial models for face recognition
    Li, Jun-Bao
    Pan, Jeng-Shyang
    Lu, Zhe-Ming
    Chang, Jung-Chou Harry
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 5503 - +
  • [42] Multiple Kernel Learning in Fisher Discriminant Analysis for Face Recognition
    Liu, Xiao-Zhang
    Feng, Guo-Can
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
  • [43] Fisher discriminant analysis based on kernel cuboid for face recognition
    Xiao-Zhang Liu
    Chen-Guang Zhang
    Soft Computing, 2016, 20 : 831 - 840
  • [44] Fisher discriminant analysis based on kernel cuboid for face recognition
    Liu, Xiao-Zhang
    Zhang, Chen-Guang
    SOFT COMPUTING, 2016, 20 (03) : 831 - 840
  • [45] A new kernel Fisher discriminant algorithm with application to face recognition
    Yang, J
    Frangi, AF
    Yang, JY
    NEUROCOMPUTING, 2004, 56 : 415 - 421
  • [46] Multiresolution based kernel fisher discriminant model for face recognition
    Jadhav, Dattatray V.
    Holambe, Raghunath S.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, PROCEEDINGS, 2007, : 848 - +
  • [47] Applying sparse KPCA for feature extraction in speech recognition
    Lima, A
    Zen, H
    Nankaku, Y
    Tokuda, K
    Kitamura, T
    Resende, FG
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (03): : 401 - 409
  • [48] Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis
    Boussaad, Leila
    Benmohammed, Mohamed
    Benzid, Redha
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2016, 12 (03): : 392 - 409
  • [49] Voice Recognition Application by Using Fisher's Linear Discriminant Analysis (FLDA) Feature Extraction
    Rachmad, Aeri
    Anamisa, Devie Rosa
    Bintari, Novia Putri
    ADVANCED SCIENCE LETTERS, 2017, 23 (12) : 12344 - 12348
  • [50] Discriminant feature extraction for image recognition using complete robust maximum margin criterion
    Xiaobo Chen
    Yingfeng Cai
    Long Chen
    Zuoyong Li
    Machine Vision and Applications, 2015, 26 : 857 - 870