KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition

被引:629
|
作者
Yang, J [1 ]
Frangi, AF
Yang, JY
Zhang, D
Jin, Z
机构
[1] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[2] Pompeu Fabra Univ, Dept Technol, Computat Imaging Lab, E-08003 Barcelona, Spain
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Univ Autonoma Barcelona, Ctr Comp Vis, E-08193 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
kernel-based methods; subspace methods; principal component analysis (PCA); Fisher linear discriminant analysis (LDA or FLD); feature extraction; machine learning; face recognition; handwritten digit recognition;
D O I
10.1109/TPAMI.2005.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
  • [21] An optimal symmetrical null space criterion of Fisher discriminant for feature extraction and recognition
    Song, Xiaoning
    Yang, Jingyu
    Wu, Xiaojun
    Yang, Xibei
    [J]. SOFT COMPUTING, 2011, 15 (02) : 281 - 293
  • [22] Feature extraction method based on the generalised Fisher discriminant criterion and facial recognition
    Guo, YF
    Shu, TT
    Yang, JY
    Li, SJ
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2001, 4 (01) : 61 - 66
  • [23] Kernel Fisher discriminant analysis embedded with feature selection
    Wang, Yong-Qiao
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1160 - 1165
  • [24] Sparse KPCA for feature extraction in speech recognition
    Lima, A
    Zen, H
    Nankaku, Y
    Tokuda, K
    Kitamura, T
    Resende, FG
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 353 - 356
  • [25] Ship target recognition using kernel Fisher discriminant
    Li, Y
    Bai, BD
    Jiao, LC
    [J]. OBJECT DETECTION, CLASSIFICATION, AND TRACKING TECHNOLOGIES, 2001, 4554 : 193 - 197
  • [26] Generalized kernel function fisher discriminant for pattern recognition
    Gan, JY
    Zhang, YW
    [J]. 2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 1075 - 1078
  • [27] Improving Kernel Fisher Discriminant Analysis for face recognition
    Liu, QS
    Lu, HQ
    Ma, SD
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (01) : 42 - 49
  • [28] Kernel inverse Fisher discriminant analysis for face recognition
    Sun, Zhongxi
    Li, Jun
    Sun, Changyin
    [J]. NEUROCOMPUTING, 2014, 134 : 46 - 52
  • [29] BDPCA plus LDA: A novel fast feature extraction technique for face recognition
    Zuo, Wangmeng
    Zhang, David
    Yang, Han
    Wang, Kuanquan
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (04): : 946 - 953
  • [30] Multiresolution feature based fractional power polynomial Kernel Fisher discriminant model for face recognition
    Jadhav, Dattatray V.
    Kulkarni, Jayant V.
    Holambe, Raghunath S.
    [J]. Journal of Multimedia, 2008, 3 (01): : 47 - 53