Nonparametric instrumental variables estimation of a quantile regression model

被引:71
|
作者
Horowitz, Joel L.
Lee, Sokbae
机构
[1] Northwestern Univ, Dept Econ, Evanston, IL 60208 USA
[2] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
statistical inverse; endogenous variable; instrumental variable; optimal rate; nonlinear integral equation; nonparametric regression;
D O I
10.1111/j.1468-0262.2007.00786.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
引用
收藏
页码:1191 / 1208
页数:18
相关论文
共 50 条