Nonparametric instrumental variables estimation of a quantile regression model

被引:71
|
作者
Horowitz, Joel L.
Lee, Sokbae
机构
[1] Northwestern Univ, Dept Econ, Evanston, IL 60208 USA
[2] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
statistical inverse; endogenous variable; instrumental variable; optimal rate; nonlinear integral equation; nonparametric regression;
D O I
10.1111/j.1468-0262.2007.00786.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
引用
收藏
页码:1191 / 1208
页数:18
相关论文
共 50 条
  • [31] Nonparametric quantile estimation
    Takeuchi, Ichiro
    Le, Quoc V.
    Sears, Timothy D.
    Smola, Alexander J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1231 - 1264
  • [32] An Algorithm of Nonparametric Quantile Regression
    Mei Ling Huang
    Yansan Han
    William Marshall
    Journal of Statistical Theory and Practice, 2023, 17
  • [33] An Algorithm of Nonparametric Quantile Regression
    Huang, Mei Ling
    Han, Yansan
    Marshall, William
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (02)
  • [34] Nonparametric circular quantile regression
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 170 : 1 - 14
  • [35] QUANTILE REGRESSION - A NONPARAMETRIC APPROACH
    LEJEUNE, MG
    SARDA, P
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 6 (03) : 229 - 239
  • [36] Estimation of Regression Coefficients in a Restricted Measurement Error Model Using Instrumental Variables
    Shalabh
    Garg, Gaurav
    Misra, Neeraj
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (19-20) : 3614 - 3629
  • [37] Quantile Regression for Dynamic Panel Data Using Hausman–Taylor Instrumental Variables
    Li Tao
    Yuanjie Zhang
    Maozai Tian
    Computational Economics, 2019, 53 : 1033 - 1069
  • [38] Nonparametric quantile regression estimation for functional data with responses missing at random
    Xu, Dengke
    Du, Jiang
    METRIKA, 2020, 83 (08) : 977 - 990
  • [39] A quantile regression approach for estimating panel data models using instrumental variables
    Harding, Matthew
    Lamarche, Carlos
    ECONOMICS LETTERS, 2009, 104 (03) : 133 - 135
  • [40] Nonparametric quantile regression estimation for functional data with responses missing at random
    Dengke Xu
    Jiang Du
    Metrika, 2020, 83 : 977 - 990