Nonparametric instrumental variables estimation of a quantile regression model

被引:71
|
作者
Horowitz, Joel L.
Lee, Sokbae
机构
[1] Northwestern Univ, Dept Econ, Evanston, IL 60208 USA
[2] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
statistical inverse; endogenous variable; instrumental variable; optimal rate; nonlinear integral equation; nonparametric regression;
D O I
10.1111/j.1468-0262.2007.00786.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
引用
下载
收藏
页码:1191 / 1208
页数:18
相关论文
共 50 条
  • [21] Nonparametric Quantile Regression Estimation for Functional Dependent Data
    Dabo-Niang, Sophie
    Laksaci, Ali
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (07) : 1254 - 1268
  • [22] A first-stage representation for instrumental variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    ECONOMETRICS JOURNAL, 2023, 26 (03): : 350 - 377
  • [23] Identification and shape restrictions in nonparametric instrumental variables estimation
    Freyberger, Joachim
    Horowitz, Joel L.
    JOURNAL OF ECONOMETRICS, 2015, 189 (01) : 41 - 53
  • [24] Testing exogeneity in nonparametric instrumental variables models identified by conditional quantile restrictions
    Fu, Jia-Young Michael
    Horowitz, Joel L.
    Parey, Matthias
    ECONOMETRICS JOURNAL, 2021, 24 (01): : 23 - 40
  • [25] Direct instrumental nonparametric estimation of inverse regression functions
    Krief, Jerome M.
    JOURNAL OF ECONOMETRICS, 2017, 201 (01) : 95 - 107
  • [26] Instrumental variables estimation of fuzzy regression models
    Shvedov, Alexey S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 5457 - 5462
  • [27] NONPARAMETRIC INSTRUMENTAL REGRESSION
    Darolles, S.
    Fan, Y.
    Florens, J. P.
    Renault, E.
    ECONOMETRICA, 2011, 79 (05) : 1541 - 1565
  • [28] Nonparametric estimation of conditional quantiles using quantile regression trees
    Chaudhuri, P
    Loh, WY
    BERNOULLI, 2002, 8 (05) : 561 - 576
  • [29] First-stage analysis for instrumental-variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    STATA JOURNAL, 2024, 24 (02): : 273 - 286
  • [30] Nonparametric Quantile Regression Estimation With Mixed Discrete and Continuous Data
    Li, Degui
    Li, Qi
    Li, Zheng
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (03) : 741 - 756