Model specification in instrumental-variables regression

被引:40
|
作者
Dunning, Thad [1 ]
机构
[1] Yale Univ, Dept Polit Sci, New Haven, CT 06520 USA
关键词
D O I
10.1093/pan/mpm039
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
In many applications of instrumental-variables regression, researchers seek to defend the plausibility of a key assumption: the instrumental variable is independent of the error term in a linear regression model. Although fulfilling this exogeneity criterion is necessary for a valid application of the instrumental-variables approach, it is not sufficient. In the regression context, the identification of causal effects depends not just on the exogeneity of the instrument but also on the validity of the underlying model. In this article, I focus on one feature of such models: the assumption that variation in the endogenous regressor that is related to the instrumental variable has the same effect as variation that is unrelated to the instrument. In many applications, this assumption may be quite strong, but relaxing it can limit our ability to estimate parameters of interest. After discussing two substantive examples, I develop analytic results (simulations are reported elsewhere). I also present a specification test that may be useful for determining the relevance of these issues in a given application.
引用
收藏
页码:290 / 302
页数:13
相关论文
共 50 条
  • [1] First-stage analysis for instrumental-variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. STATA JOURNAL, 2024, 24 (02): : 273 - 286
  • [2] A robust instrumental-variables estimator
    Desbordes, Rodolphe
    Verardi, Vincenzo
    [J]. STATA JOURNAL, 2012, 12 (02): : 169 - 181
  • [3] Two-sample instrumental-variables regression with potentially weak instruments
    Choi, Jaerim
    Shen, Shu
    [J]. STATA JOURNAL, 2019, 19 (03): : 581 - 597
  • [4] Body mass index and depressive symptoms: instrumental-variables regression with genetic risk score
    Jokela, M.
    Elovainio, M.
    Keltikangas-Jarvinen, L.
    Batty, G. D.
    Hintsanen, M.
    Seppala, I.
    Kahonen, M.
    Viikari, J. S.
    Raitakari, O. T.
    Lehtimaki, T.
    Kivimaki, M.
    [J]. GENES BRAIN AND BEHAVIOR, 2012, 11 (08) : 942 - 948
  • [5] BOUNDING THE EFFECTS OF PROXY VARIABLES ON INSTRUMENTAL-VARIABLES COEFFICIENTS
    KRASKER, WS
    PRATT, JW
    [J]. JOURNAL OF ECONOMETRICS, 1987, 35 (2-3) : 233 - 252
  • [6] Causal mediation analysis in instrumental-variables regressions
    Dippel, Christian
    Ferrara, Andreas
    Heblich, Stephan
    [J]. STATA JOURNAL, 2020, 20 (03): : 613 - 626
  • [7] AN INSTRUMENTAL-VARIABLES APPROACH TO INCOME-REDISTRIBUTION
    TIDEMAN, TN
    COATS, RM
    [J]. PUBLIC CHOICE, 1987, 52 (02) : 187 - 192
  • [8] ivcrc: An instrumental-variables estimator for the correlated random-coefficients model
    Benson, David
    Masten, Matthew A.
    Torgovitsky, Alexander
    [J]. STATA JOURNAL, 2022, 22 (03): : 469 - 495
  • [9] Instrumental-Variables Simultaneous Equations Model of Physical Activity and Body Mass Index
    Meyer, Katie A.
    Guilkey, David K.
    Tien, Hsiao-Chuen
    Kiefe, Catarina I.
    Popkin, Barry M.
    Gordon-Larsen, Penny
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 184 (06) : 465 - 476
  • [10] Causal effects of foster care: An instrumental-variables approach
    Doyle, Joseph J., Jr.
    [J]. CHILDREN AND YOUTH SERVICES REVIEW, 2013, 35 (07) : 1143 - 1151