Approximation algorithms for minimum-width annuli and shells

被引:19
|
作者
Agarwal, PK
Aronov, B
Har-Peled, S
Sharir, M
机构
[1] Duke Univ, Ctr Geometr Comp, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s004540010062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in R-d. The "roundness" of S can be measured by computing the width omega* = omega*(S) of the thinnest spherical shell (or annulus in R-2) that contains S. This paper contains two main results related to computing an approximation of omega*: (i) For d = 2, we can compute in O(n logn) time an annulus containing S whose width is at most 2 omega*(S). We extend this algorithm, so that, for any given parameter epsilon > 0, an annulus containing S whose width is at most (1 + epsilon)omega* is computed in time O(n log n + n/epsilon (2)). (ii) For d greater than or equal to 3, given a parameter epsilon > 0, we can compute a shell containing S of width at most (1 + epsilon)omega* either in time O((n/epsilon (d))log(Delta/omega*epsilon)) or in time O ((n/epsilon (d-2))(log n + 1/epsilon) log(Delta/omega*epsilon)), where Delta is the diameter of S.
引用
下载
收藏
页码:687 / 705
页数:19
相关论文
共 50 条
  • [1] Approximation and exact algorithms for minimum-width annuli and shells
    Agarwal, Pankaj K.
    Aronov, Boris
    Har-Peled, Sariel
    Sharir, Micha
    Proceedings of the Annual Symposium on Computational Geometry, 1999, : 380 - 389
  • [2] Exact and approximation algorithms for minimum-width cylindrical shells
    Agarwal, PK
    Aronov, B
    Sharir, M
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 510 - 517
  • [3] Exact and Approximation Algorithms for Minimum-Width Cylindrical Shells
    P. K. Agarwal
    B. Aronov
    M. Sharir
    Discrete & Computational Geometry, 2001, 26 : 307 - 320
  • [4] Exact and approximation algorithms for minimum-width cylindrical shells
    Agarwal, PK
    Aronov, B
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (03) : 307 - 320
  • [5] Minimum-width cuboidal shells with outliers
    Bae S.W.
    Journal of Computing Science and Engineering, 2020, 14 (01) : 1 - 8
  • [6] Computing constrained minimum-width annuli of point sets
    de Berg, M
    Bose, P
    Bremner, D
    Ramaswami, S
    Wilfong, G
    COMPUTER-AIDED DESIGN, 1998, 30 (04) : 267 - 275
  • [7] Computing constrained minimum-width annuli of point sets
    de Berg, M
    Bose, P
    Bremner, D
    Ramaswami, S
    Wilfong, G
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 392 - 401
  • [8] Minimum-width rectangular annulus
    Mukherjee, Joydeep
    Mahapatra, Priya Ranjan Sinha
    Karmakar, Arindam
    Das, Sandip
    THEORETICAL COMPUTER SCIENCE, 2013, 508 : 74 - 80
  • [9] METHOD OF REALIZING MINIMUM-WIDTH WIRINGS
    ASANO, T
    KITAHASHI, T
    TANAKA, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1976, 59 (02): : 29 - 39
  • [10] Constructing minimum-width confidence bands
    Schuessler, Rainer
    Trede, Mark
    ECONOMICS LETTERS, 2016, 145 : 182 - 185