Approximation algorithms for minimum-width annuli and shells

被引:19
|
作者
Agarwal, PK
Aronov, B
Har-Peled, S
Sharir, M
机构
[1] Duke Univ, Ctr Geometr Comp, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s004540010062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in R-d. The "roundness" of S can be measured by computing the width omega* = omega*(S) of the thinnest spherical shell (or annulus in R-2) that contains S. This paper contains two main results related to computing an approximation of omega*: (i) For d = 2, we can compute in O(n logn) time an annulus containing S whose width is at most 2 omega*(S). We extend this algorithm, so that, for any given parameter epsilon > 0, an annulus containing S whose width is at most (1 + epsilon)omega* is computed in time O(n log n + n/epsilon (2)). (ii) For d greater than or equal to 3, given a parameter epsilon > 0, we can compute a shell containing S of width at most (1 + epsilon)omega* either in time O((n/epsilon (d))log(Delta/omega*epsilon)) or in time O ((n/epsilon (d-2))(log n + 1/epsilon) log(Delta/omega*epsilon)), where Delta is the diameter of S.
引用
收藏
页码:687 / 705
页数:19
相关论文
共 50 条
  • [21] Computing a minimum-width square annulus in arbitrary orientation
    Bae, Sang Won
    THEORETICAL COMPUTER SCIENCE, 2018, 718 : 2 - 13
  • [22] A heuristic for minimum-width graph layering with consideration of dummy nodes
    Tarassov, A
    Nikolov, NS
    Branke, J
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, 2004, 3059 : 570 - 583
  • [23] Minimum-Width Annulus with Outliers: Circular, Square, and Rectangular Cases
    Ahn, Hee-Kap
    Ahn, Taehoon
    Bae, Sang Won
    Choi, Jongmin
    Kim, Mincheol
    Oh, Eunjin
    Shin, Chan-Su
    Yoon, Sang Duk
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2018, 2018, 10755 : 44 - 55
  • [24] A data-parallel algorithm for minimum-width tree layout
    Lang, W
    INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 21 - 28
  • [26] Minimum-width annulus with outliers: Circular, square, and rectangular cases
    Ahn, Hee-Kap
    Ahn, Taehoon
    Bae, Sang Won
    Choi, Jongmin
    Kim, Mincheol
    Oh, Eunjin
    Shin, Chan-Su
    Yoon, Sang Duk
    INFORMATION PROCESSING LETTERS, 2019, 145 : 16 - 23
  • [27] MINIMUM-WIDTH CONTROL-CURRENT PULSE FOR JOSEPHSON LOGIC GATES
    DHONG, SH
    VANDUZER, T
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (10) : 1965 - 1973
  • [28] Computing a Minimum-Width Square or Rectangular Annulus with Outliers [Extended Abstract]
    Bae, Sang Won
    COMPUTING AND COMBINATORICS, COCOON 2016, 2016, 9797 : 443 - 454
  • [29] Minimum-Width Double-Slabs and Widest Empty Slabs in High Dimensions
    Ahn, Taehoon
    Chung, Chaeyoon
    Ahn, Hee-Kap
    Bae, Sang Won
    Cheong, Otfried
    Yoon, Sang Duk
    LATIN 2024: THEORETICAL INFORMATICS, PT I, 2024, 14578 : 303 - 317
  • [30] A hierarchical technique for minimum-width layout of two-dimensional CMOS cells
    Gupta, A
    Hayes, JP
    TENTH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS, 1997, : 15 - 20