Approximation algorithms for minimum-width annuli and shells

被引:19
|
作者
Agarwal, PK
Aronov, B
Har-Peled, S
Sharir, M
机构
[1] Duke Univ, Ctr Geometr Comp, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s004540010062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in R-d. The "roundness" of S can be measured by computing the width omega* = omega*(S) of the thinnest spherical shell (or annulus in R-2) that contains S. This paper contains two main results related to computing an approximation of omega*: (i) For d = 2, we can compute in O(n logn) time an annulus containing S whose width is at most 2 omega*(S). We extend this algorithm, so that, for any given parameter epsilon > 0, an annulus containing S whose width is at most (1 + epsilon)omega* is computed in time O(n log n + n/epsilon (2)). (ii) For d greater than or equal to 3, given a parameter epsilon > 0, we can compute a shell containing S of width at most (1 + epsilon)omega* either in time O((n/epsilon (d))log(Delta/omega*epsilon)) or in time O ((n/epsilon (d-2))(log n + 1/epsilon) log(Delta/omega*epsilon)), where Delta is the diameter of S.
引用
收藏
页码:687 / 705
页数:19
相关论文
共 50 条
  • [41] Approximation algorithms for some Minimum Postmen Cover
    Mao, Yuying
    Yu, Wei
    Liu, Zhaohui
    Xiong, Jiafeng
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 382 - 393
  • [42] Approximation algorithms for the minimum rainbow subgraph problem
    Camacho, Stephan Matos
    Schiermeyer, Ingo
    Tuza, Zsolt
    DISCRETE MATHEMATICS, 2010, 310 (20) : 2666 - 2670
  • [43] Approximation algorithms for the minimum convex partition problem
    Knauer, Christian
    Spillner, Andreas
    ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 232 - 241
  • [44] APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST
    KORTSARZ, G
    PELEG, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 601 : 67 - 78
  • [45] Approximation Algorithms for Minimum Chain Vertex Deletion
    Kumar, Mrinal
    Mishra, Sounaka
    Devi, N. Safina
    Saurabh, Saket
    WALCOM: ALGORITHMS AND COMPUTATION, 2011, 6552 : 21 - +
  • [46] Approximation algorithms for minimum K-cut
    Guttmann-Beck, N
    Hassin, R
    ALGORITHMICA, 2000, 27 (02) : 198 - 207
  • [47] Exact minimum-width multi-row transistor placement for dual and non-dual CMOS cells
    Iezuka, Tetsuya
    Ikeda, Makoto
    Asada, Kunihiro
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 5431 - +
  • [48] New Approximation Algorithms for Minimum Cycle Bases of Graphs
    Telikepalli Kavitha
    Kurt Mehlhorn
    Dimitrios Michail
    Algorithmica, 2011, 59 : 471 - 488
  • [49] Improved approximation algorithms for minimum weight vertex separators
    Feige, Uriel
    Hajiaghayi, Mohammadtaghi
    Lee, James R.
    SIAM JOURNAL ON COMPUTING, 2008, 38 (02) : 629 - 657
  • [50] Approximation Algorithms for Minimum Norm and Ordered Optimization Problems
    Chakrabarty, Deeparnab
    Swamy, Chaitanya
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 126 - 137