Approximation algorithms for minimum-width annuli and shells

被引:19
|
作者
Agarwal, PK
Aronov, B
Har-Peled, S
Sharir, M
机构
[1] Duke Univ, Ctr Geometr Comp, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s004540010062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in R-d. The "roundness" of S can be measured by computing the width omega* = omega*(S) of the thinnest spherical shell (or annulus in R-2) that contains S. This paper contains two main results related to computing an approximation of omega*: (i) For d = 2, we can compute in O(n logn) time an annulus containing S whose width is at most 2 omega*(S). We extend this algorithm, so that, for any given parameter epsilon > 0, an annulus containing S whose width is at most (1 + epsilon)omega* is computed in time O(n log n + n/epsilon (2)). (ii) For d greater than or equal to 3, given a parameter epsilon > 0, we can compute a shell containing S of width at most (1 + epsilon)omega* either in time O((n/epsilon (d))log(Delta/omega*epsilon)) or in time O ((n/epsilon (d-2))(log n + 1/epsilon) log(Delta/omega*epsilon)), where Delta is the diameter of S.
引用
收藏
页码:687 / 705
页数:19
相关论文
共 50 条