Computing constrained minimum-width annuli of point sets

被引:0
|
作者
de Berg, M
Bose, P
Bremner, D
Ramaswami, S
Wilfong, G
机构
[1] Univ Utrecht, Dept Comp Sci, NL-3508 TB Utrecht, Netherlands
[2] Univ Quebec, Dept Math & Informat, Trois Rivieres, PQ GA9 5H7, Canada
[3] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[4] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of determining whether a manufactured disc of certain radius r is within tolerance. More precisely, we present algorithms that, given a set of n probe points on the surface of the manufactured object, compute the thinnest annulus whose outer (or inner, or median) radius is r and that contains all the probe points. Our algorithms run in O(n log n) time.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 50 条
  • [1] Computing constrained minimum-width annuli of point sets
    de Berg, M
    Bose, P
    Bremner, D
    Ramaswami, S
    Wilfong, G
    [J]. COMPUTER-AIDED DESIGN, 1998, 30 (04) : 267 - 275
  • [2] Approximation Algorithms for Minimum-Width Annuli and Shells
    P. K. Agarwal
    B. Aronov
    S. Har-Peled
    M. Sharir
    [J]. Discrete & Computational Geometry, 2000, 24 : 687 - 705
  • [3] Approximation algorithms for minimum-width annuli and shells
    Agarwal, PK
    Aronov, B
    Har-Peled, S
    Sharir, M
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (04) : 687 - 705
  • [4] Approximation and exact algorithms for minimum-width annuli and shells
    Agarwal, Pankaj K.
    Aronov, Boris
    Har-Peled, Sariel
    Sharir, Micha
    [J]. Proceedings of the Annual Symposium on Computational Geometry, 1999, : 380 - 389
  • [5] Computing a minimum-width cubic and hypercubic shell
    Bae, Sang Won
    [J]. OPERATIONS RESEARCH LETTERS, 2019, 47 (05) : 398 - 405
  • [6] Computing a minimum-width square or rectangular annulus with outliers
    Bae, Sang Won
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 76 : 33 - 45
  • [7] Computing a minimum-width square annulus in arbitrary orientation
    Bae, Sang Won
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 718 : 2 - 13
  • [8] Computing a Minimum-Width Square or Rectangular Annulus with Outliers [Extended Abstract]
    Bae, Sang Won
    [J]. COMPUTING AND COMBINATORICS, COCOON 2016, 2016, 9797 : 443 - 454
  • [9] Minimum-width rectangular annulus
    Mukherjee, Joydeep
    Mahapatra, Priya Ranjan Sinha
    Karmakar, Arindam
    Das, Sandip
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 508 : 74 - 80
  • [10] METHOD OF REALIZING MINIMUM-WIDTH WIRINGS
    ASANO, T
    KITAHASHI, T
    TANAKA, K
    [J]. ELECTRONICS & COMMUNICATIONS IN JAPAN, 1976, 59 (02): : 29 - 39