ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES OF CONVERGENCE AND ADAPTIVE ESTIMATION

被引:110
|
作者
Cai, T. Tony [1 ]
Liu, Weidong [2 ,3 ]
Zhou, Harrison H. [4 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[4] Yale Univ, Dept Stat, New Haven, CT 06511 USA
来源
ANNALS OF STATISTICS | 2016年 / 44卷 / 02期
基金
美国国家科学基金会;
关键词
Constrained l(1)-minimization; covariance matrix; graphical model; minimax lower bound; optimal rate of convergence; precision matrix; sparsity; spectral norm; COVARIANCE ESTIMATION; SELECTION;
D O I
10.1214/13-AOS1171
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Precision matrix is of significant importance in a wide range of applications in multivariate analysis. This paper considers adaptive minimax estimation of sparse precision matrices in the high dimensional setting. Optimal rates of convergence are established for a range of matrix norm losses. A fully data driven estimator based on adaptive constrained l(1) minimization is proposed and its rate of convergence is obtained over a collection of parameter spaces. The estimator, called ACLIME, is easy to implement and performs well numerically. A major step in establishing the minimax rate of convergence is the derivation of a rate-sharp lower bound. A "two-directional" lower bound technique is applied to obtain the minimax lower bound. The upper and lower bounds together yield the optimal rates of convergence for sparse precision matrix estimation and show that the ACLIME estimator is adaptively minimax rate optimal for a collection of parameter spaces and a range of matrix norm losses simultaneously.
引用
收藏
页码:455 / 488
页数:34
相关论文
共 50 条
  • [31] On the inconsistency of l1-penalised sparse precision matrix estimation
    Heinavaara, Otte
    Leppa-aho, Janne
    Corander, Jukka
    Honkela, Antti
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [32] Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
    Kuismin, Markku
    Sillanpaa, Mikko J.
    [J]. PLOS ONE, 2016, 11 (02):
  • [33] Bayesian inference for adaptive low rank and sparse matrix estimation
    Jia, Xixi
    Feng, Xiangchu
    Wang, Weiwei
    Xu, Chen
    Zhang, Lei
    [J]. NEUROCOMPUTING, 2018, 291 : 71 - 83
  • [34] Rates of convergence in conditional covariance matrix with nonparametric entries estimation
    Loubes, Jean-Michel
    Marteau, Clement
    Solis, Maikol
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4536 - 4558
  • [35] Optimal convergence rates for density estimation from grouped data
    Meister, Alexander
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (11) : 1091 - 1097
  • [36] Support recovery and sup-norm convergence rates for sparse pivotal estimation
    Massias, Mathurin
    Bertrand, Quentin
    Gramfort, Alexandre
    Salmon, Joseph
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2655 - 2664
  • [37] Penalized spline estimation of principal components for sparse functional data: Rates of convergence
    He, Shiyuan
    Huang, Jianhua Z.
    He, Kejun
    [J]. BERNOULLI, 2024, 30 (04) : 2795 - 2820
  • [38] Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines
    Gantner, Gregor
    Haberlik, Daniel
    Praetorius, Dirk
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (14): : 2631 - 2674
  • [39] ADAPTIVE MORLEY FEM FOR THE VON KAARMAN EQUATIONS WITH OPTIMAL CONVERGENCE RATES
    Carstensen, Carsten
    Nataraj, Neela
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 696 - 719
  • [40] Adaptive wavelet methods for saddle point problems optimal convergence rates
    Dahlke, S
    Dahmen, W
    Urban, K
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) : 1230 - 1262