ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES OF CONVERGENCE AND ADAPTIVE ESTIMATION

被引:110
|
作者
Cai, T. Tony [1 ]
Liu, Weidong [2 ,3 ]
Zhou, Harrison H. [4 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[4] Yale Univ, Dept Stat, New Haven, CT 06511 USA
来源
ANNALS OF STATISTICS | 2016年 / 44卷 / 02期
基金
美国国家科学基金会;
关键词
Constrained l(1)-minimization; covariance matrix; graphical model; minimax lower bound; optimal rate of convergence; precision matrix; sparsity; spectral norm; COVARIANCE ESTIMATION; SELECTION;
D O I
10.1214/13-AOS1171
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Precision matrix is of significant importance in a wide range of applications in multivariate analysis. This paper considers adaptive minimax estimation of sparse precision matrices in the high dimensional setting. Optimal rates of convergence are established for a range of matrix norm losses. A fully data driven estimator based on adaptive constrained l(1) minimization is proposed and its rate of convergence is obtained over a collection of parameter spaces. The estimator, called ACLIME, is easy to implement and performs well numerically. A major step in establishing the minimax rate of convergence is the derivation of a rate-sharp lower bound. A "two-directional" lower bound technique is applied to obtain the minimax lower bound. The upper and lower bounds together yield the optimal rates of convergence for sparse precision matrix estimation and show that the ACLIME estimator is adaptively minimax rate optimal for a collection of parameter spaces and a range of matrix norm losses simultaneously.
引用
收藏
页码:455 / 488
页数:34
相关论文
共 50 条
  • [21] Estimating sparse precision matrices
    Padmanabhan, Nikhil
    White, Martin
    Zhou, Harrison H.
    O'Connell, Ross
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1567 - 1576
  • [22] OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS
    Wang, Zhaoran
    Liu, Han
    Zhang, Tong
    [J]. ANNALS OF STATISTICS, 2014, 42 (06): : 2164 - 2201
  • [23] ASYMPTOTIC OPTIMAL RATE OF CONVERGENCE FOR AN ADAPTIVE ESTIMATION PROCEDURE
    YIN, G
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 184 : 480 - 489
  • [24] Posterior convergence rates for high-dimensional precision matrix estimation using G-Wishart priors
    Banerjee, Sayantan
    [J]. STAT, 2017, 6 (01): : 207 - 217
  • [25] Posterior convergence rates for estimating large precision matrices using graphical models
    Banerjee, Sayantan
    Ghosal, Subhashis
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2111 - 2137
  • [26] Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates
    Carsten Carstensen
    Sophie Puttkammer
    [J]. Numerische Mathematik, 2024, 156 : 1 - 38
  • [27] ADAPTIVE ALGORITHM FOR MULTIVARIATE APPROXIMATION GIVING OPTIMAL CONVERGENCE RATES
    BOOR, CD
    RICE, JR
    [J]. JOURNAL OF APPROXIMATION THEORY, 1979, 25 (04) : 337 - 359
  • [28] Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates
    Carstensen, Carsten
    Puttkammer, Sophie
    [J]. NUMERISCHE MATHEMATIK, 2024, 156 (01) : 1 - 38
  • [29] Adaptive IGAFEM with optimal convergence rates: T-splines
    Gantner, Gregor
    Praetorius, Dirk
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2020, 81
  • [30] Sparse precision matrix estimation under lower polynomial moment assumption
    Miao, Li
    Wang, Jinru
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2925 - 2940