Penalized spline estimation of principal components for sparse functional data: Rates of convergence

被引:0
|
作者
He, Shiyuan [1 ,2 ]
Huang, Jianhua Z. [3 ]
He, Kejun [2 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
[2] Renmin Univ China, Inst Stat & Big Data, Ctr Appl Stat, Beijing, Peoples R China
[3] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen CUHK Shenzhen, Shenzhen, Peoples R China
关键词
Functional principal component analysis; manifold geometry; matrix Bregman divergence; roughness penalty; ASYMPTOTIC PROPERTIES; REGRESSION; MODELS;
D O I
10.3150/23-BEJ1695
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper gives a comprehensive treatment of the convergence rates of penalized spline estimators for simultaneously estimating several leading principal component functions, when the functional data is sparsely observed. The penalized spline estimators are defined as the solution of a penalized empirical risk minimization problem, where the loss function belongs to a general class of loss functions motivated by the matrix Bregman divergence, and the penalty term is the integrated squared derivative. The theory reveals that the asymptotic behavior of penalized spline estimators depends on the interesting interplay between several factors, i.e., the smoothness of the unknown functions, the spline degree, the spline knot number, the penalty order, and the penalty parameter. The theory also classifies the asymptotic behavior into seven scenarios and characterizes whether and how the minimax optimal rates of convergence are achievable in each scenario.
引用
收藏
页码:2795 / 2820
页数:26
相关论文
共 50 条
  • [1] Rates of convergence for spline estimates of additive principal components
    El Faouzi, NE
    Sarda, P
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 68 (01) : 120 - 137
  • [2] Penalized spline models for functional principal component analysis
    Yao, F
    Lee, TCM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 3 - 25
  • [3] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [4] Robust functional principal components for sparse longitudinal data
    Graciela Boente
    Matías Salibián-Barrera
    [J]. METRON, 2021, 79 : 159 - 188
  • [5] Bayesian Estimation of Principal Components for Functional Data
    Suarez, Adam J.
    Ghosal, Subhashis
    [J]. BAYESIAN ANALYSIS, 2017, 12 (02): : 311 - 333
  • [6] Penalized Spline Approaches for Functional Principal Component Logit Regression
    Aguilera, A.
    Aguilera-Morillo, M. C.
    Escabias, M.
    Valderrama, M.
    [J]. RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 1 - 7
  • [7] A Geometric Approach to Maximum Likelihood Estimation of the Functional Principal Components From Sparse Longitudinal Data
    Peng, Jie
    Paul, Debashis
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (04) : 995 - 1015
  • [8] Spline estimation of functional principal components via manifold conjugate gradient algorithm
    Shiyuan He
    Hanxuan Ye
    Kejun He
    [J]. Statistics and Computing, 2022, 32
  • [9] Spline estimation of functional principal components via manifold conjugate gradient algorithm
    He, Shiyuan
    Ye, Hanxuan
    He, Kejun
    [J]. STATISTICS AND COMPUTING, 2022, 32 (06)
  • [10] Penalized spline estimation for functional coefficient regression models
    Cao, Yanrong
    Lin, Haiqun
    Wu, Tracy Z.
    Yu, Yan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 891 - 905