Penalized spline estimation for functional coefficient regression models

被引:16
|
作者
Cao, Yanrong [2 ]
Lin, Haiqun [3 ]
Wu, Tracy Z. [4 ]
Yu, Yan [1 ]
机构
[1] Univ Cincinnati, Cincinnati, OH 45221 USA
[2] Manulife Financial, Toronto, ON M4W 1E5, Canada
[3] Yale Univ, New Haven, CT 06520 USA
[4] JP Morgan Chase Bank, Columbus, OH 43240 USA
关键词
NONLINEAR TIME-SERIES; NONPARAMETRIC REGRESSION; LINEAR-MODELS; PENALTIES;
D O I
10.1016/j.csda.2009.09.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter lambda, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter lambda: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty lambda accordingly. We demonstrate the proposed approach by both simulation examples and a real data application. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:891 / 905
页数:15
相关论文
共 50 条
  • [1] Penalized spline estimation for varying-coefficient models
    Lu, Yiqiang
    Zhang, Riquan
    Zhu, Liping
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (14) : 2249 - 2261
  • [2] Penalized spline estimation in varying coefficient models with censored data
    Hendrickx, K.
    Janssen, P.
    Verhasselt, A.
    [J]. TEST, 2018, 27 (04) : 871 - 895
  • [3] Penalized spline estimation in varying coefficient models with censored data
    K. Hendrickx
    P. Janssen
    A. Verhasselt
    [J]. TEST, 2018, 27 : 871 - 895
  • [4] Spline estimation of functional coefficient regression models for time series with correlated errors
    Montoril, Michel H.
    Morettin, Pedro A.
    Chiann, Chang
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 92 : 226 - 231
  • [5] Penalized spline approaches for functional logit regression
    Carmen Aguilera-Morillo, M.
    Aguilera, Ana M.
    Escabias, Manuel
    Valderrama, Mariano J.
    [J]. TEST, 2013, 22 (02) : 251 - 277
  • [6] Penalized spline approaches for functional logit regression
    M. Carmen Aguilera-Morillo
    Ana M. Aguilera
    Manuel Escabias
    Mariano J. Valderrama
    [J]. TEST, 2013, 22 : 251 - 277
  • [7] Wavelet estimation of functional coefficient regression models
    Montoril, Michel H.
    Morettin, Pedro A.
    Chiann, Chang
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (01)
  • [8] Penalized I-spline monotone regression estimation
    Choi, Junsouk
    Lee, JungJun
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3714 - 3732
  • [9] An Outlier Detection Method in Penalized Spline Regression Models
    Seo, Han Son
    Song, Ji Eun
    Yoon, Min
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (04) : 687 - 696
  • [10] Polynomial spline estimation for partial functional linear regression models
    Jianjun Zhou
    Zhao Chen
    Qingyan Peng
    [J]. Computational Statistics, 2016, 31 : 1107 - 1129