Penalized spline approaches for functional logit regression

被引:20
|
作者
Carmen Aguilera-Morillo, M. [1 ]
Aguilera, Ana M. [2 ]
Escabias, Manuel [1 ]
Valderrama, Mariano J. [1 ]
机构
[1] Fac Farm, Dept Estadist & Invest Operat, Granada 18071, Spain
[2] Univ Granada, Fac Ciencias, Dept Estadist & Invest Operat, E-18071 Granada, Spain
关键词
Functional logit regression; Functional principal components analysis; Penalized splines; B-splines; GENERALIZED LINEAR-MODELS; ESTIMATORS; CLASSIFICATION; CURVES;
D O I
10.1007/s11749-012-0307-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of multicollinearity associated with the estimation of a functional logit model can be solved by using as predictor variables a set of functional principal components. The functional parameter estimated by functional principal component logit regression is often nonsmooth and then difficult to interpret. To solve this problem, different penalized spline estimations of the functional logit model are proposed in this paper. All of them are based on smoothed functional PCA and/or a discrete penalty in the log-likelihood criterion in terms of B-spline expansions of the sample curves and the functional parameter. The ability of these smoothing approaches to provide an accurate estimation of the functional parameter and their classification performance with respect to unpenalized functional PCA and LDA-PLS are evaluated via simulation and application to real data. Leave-one-out cross-validation and generalized cross-validation are adapted to select the smoothing parameter and the number of principal components or basis functions associated with the considered approaches.
引用
收藏
页码:251 / 277
页数:27
相关论文
共 50 条
  • [1] Penalized spline approaches for functional logit regression
    M. Carmen Aguilera-Morillo
    Ana M. Aguilera
    Manuel Escabias
    Mariano J. Valderrama
    [J]. TEST, 2013, 22 : 251 - 277
  • [2] Penalized Spline Approaches for Functional Principal Component Logit Regression
    Aguilera, A.
    Aguilera-Morillo, M. C.
    Escabias, M.
    Valderrama, M.
    [J]. RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 1 - 7
  • [3] Penalized spline estimation for functional coefficient regression models
    Cao, Yanrong
    Lin, Haiqun
    Wu, Tracy Z.
    Yu, Yan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 891 - 905
  • [4] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [5] Comparison of Significant Approaches of Penalized Spline Regression (P-splines)
    Sharif, Saira
    Kamal, Shahid
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (02) : 289 - 303
  • [6] On knot placement for penalized spline regression
    Yao, Fang
    Lee, Thomas C. M.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (03) : 259 - 267
  • [7] On knot placement for penalized spline regression
    Fang Yao
    Thomas C. M. Lee
    [J]. Journal of the Korean Statistical Society, 2008, 37 : 259 - 267
  • [8] Penalized PCA approaches for B-spline expansions of smooth functional data
    Aguilera, A. M.
    Aguilera-Morillo, M. C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7805 - 7819
  • [9] Penalized Functional Regression
    Goldsmith, Jeff
    Bobb, Jennifer
    Crainiceanu, Ciprian M.
    Caffo, Brian
    Reich, Daniel
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 830 - 851
  • [10] Examination of Influential Observations in Penalized Spline Regression
    Turkan, Semra
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1454 - 1457