On knot placement for penalized spline regression

被引:0
|
作者
Fang Yao
Thomas C. M. Lee
机构
[1] University of Toronto,Department of Statistics
[2] The Chinese University of Hong Kong,Department of Statistics
[3] Colorado State University,Department of Statistics
关键词
62G08; 65D10; Knot placement; Local extrema; Nonparametric regression; Penalized splines; Semiparametric regression;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the problem of knot placement in penalized regression spline fitting. Given a pre-specified number of knots, most existing knot placement methods allocate the knots in an equally spaced fashion. This paper proposes a simple knot placement scheme for improving such “equally spaced methods”. This new scheme first identifies locations of local extrema in the target function, and then it places additional knots in such places. The rationale behind this is that quite often such local extrema coincide with the critical locations for placing knots. The proposed scheme is shown to be superior in a simulation study.
引用
收藏
页码:259 / 267
页数:8
相关论文
共 50 条
  • [1] On knot placement for penalized spline regression
    Yao, Fang
    Lee, Thomas C. M.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (03) : 259 - 267
  • [2] Strategy for node placement for penalized spline regression
    Silva, Gabriel Edson S.
    Silva, Matheus C.
    Moura, Ernandes G.
    Garcia, Luiz Leonardo D.
    [J]. SIGMAE, 2019, 8 (02): : 206 - 213
  • [3] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [4] Penalized spline approaches for functional logit regression
    Carmen Aguilera-Morillo, M.
    Aguilera, Ana M.
    Escabias, Manuel
    Valderrama, Mariano J.
    [J]. TEST, 2013, 22 (02) : 251 - 277
  • [5] Examination of Influential Observations in Penalized Spline Regression
    Turkan, Semra
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1454 - 1457
  • [6] Penalized spline approaches for functional logit regression
    M. Carmen Aguilera-Morillo
    Ana M. Aguilera
    Manuel Escabias
    Mariano J. Valderrama
    [J]. TEST, 2013, 22 : 251 - 277
  • [7] Asymptotics for penalized spline estimators in quantile regression
    Yoshida, Takuma
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4815 - 4834
  • [8] Data-driven selection of the spline dimension in penalized spline regression
    Kauermann, Goeran
    Opsomer, Jean D.
    [J]. BIOMETRIKA, 2011, 98 (01) : 225 - 230
  • [9] Automatic Bayesian knot placement for spline fitting
    Mamic, G
    Bennamoun, M
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 169 - 172
  • [10] Penalized I-spline monotone regression estimation
    Choi, Junsouk
    Lee, JungJun
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3714 - 3732