Examination of Influential Observations in Penalized Spline Regression

被引:0
|
作者
Turkan, Semra [1 ]
机构
[1] Hacettepe Univ, Dept Stat, Fac Sci, Ankara, Turkey
关键词
Case deletion; penalized regression; Pena's statistic; Cook's distance; influential observations; LINEAR-REGRESSION;
D O I
10.1063/1.4825792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.
引用
收藏
页码:1454 / 1457
页数:4
相关论文
共 50 条
  • [1] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [2] On knot placement for penalized spline regression
    Yao, Fang
    Lee, Thomas C. M.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (03) : 259 - 267
  • [3] On knot placement for penalized spline regression
    Fang Yao
    Thomas C. M. Lee
    [J]. Journal of the Korean Statistical Society, 2008, 37 : 259 - 267
  • [4] Penalized spline approaches for functional logit regression
    Carmen Aguilera-Morillo, M.
    Aguilera, Ana M.
    Escabias, Manuel
    Valderrama, Mariano J.
    [J]. TEST, 2013, 22 (02) : 251 - 277
  • [5] Strategy for node placement for penalized spline regression
    Silva, Gabriel Edson S.
    Silva, Matheus C.
    Moura, Ernandes G.
    Garcia, Luiz Leonardo D.
    [J]. SIGMAE, 2019, 8 (02): : 206 - 213
  • [6] Penalized spline approaches for functional logit regression
    M. Carmen Aguilera-Morillo
    Ana M. Aguilera
    Manuel Escabias
    Mariano J. Valderrama
    [J]. TEST, 2013, 22 : 251 - 277
  • [7] Asymptotics for penalized spline estimators in quantile regression
    Yoshida, Takuma
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4815 - 4834
  • [8] Data-driven selection of the spline dimension in penalized spline regression
    Kauermann, Goeran
    Opsomer, Jean D.
    [J]. BIOMETRIKA, 2011, 98 (01) : 225 - 230
  • [9] INFLUENTIAL OBSERVATIONS AND OUTLIERS IN REGRESSION
    DRAPER, NR
    JOHN, JA
    [J]. TECHNOMETRICS, 1981, 23 (01) : 21 - 26
  • [10] Penalized I-spline monotone regression estimation
    Choi, Junsouk
    Lee, JungJun
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3714 - 3732