Penalized spline approaches for functional logit regression

被引:20
|
作者
Carmen Aguilera-Morillo, M. [1 ]
Aguilera, Ana M. [2 ]
Escabias, Manuel [1 ]
Valderrama, Mariano J. [1 ]
机构
[1] Fac Farm, Dept Estadist & Invest Operat, Granada 18071, Spain
[2] Univ Granada, Fac Ciencias, Dept Estadist & Invest Operat, E-18071 Granada, Spain
关键词
Functional logit regression; Functional principal components analysis; Penalized splines; B-splines; GENERALIZED LINEAR-MODELS; ESTIMATORS; CLASSIFICATION; CURVES;
D O I
10.1007/s11749-012-0307-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of multicollinearity associated with the estimation of a functional logit model can be solved by using as predictor variables a set of functional principal components. The functional parameter estimated by functional principal component logit regression is often nonsmooth and then difficult to interpret. To solve this problem, different penalized spline estimations of the functional logit model are proposed in this paper. All of them are based on smoothed functional PCA and/or a discrete penalty in the log-likelihood criterion in terms of B-spline expansions of the sample curves and the functional parameter. The ability of these smoothing approaches to provide an accurate estimation of the functional parameter and their classification performance with respect to unpenalized functional PCA and LDA-PLS are evaluated via simulation and application to real data. Leave-one-out cross-validation and generalized cross-validation are adapted to select the smoothing parameter and the number of principal components or basis functions associated with the considered approaches.
引用
收藏
页码:251 / 277
页数:27
相关论文
共 50 条
  • [21] Penalized Cox regression with a five-parameter spline model
    Shih, Jia-Han
    Emura, Takeshi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (16) : 3749 - 3768
  • [22] A Taper Equation for Loblolly Pine Using Penalized Spline Regression
    Zapata-Cuartas, Mauricio
    Bullock, Bronson P.
    Montes, Cristian R.
    [J]. FOREST SCIENCE, 2021, 67 (01) : 1 - 13
  • [23] HAZARD REGRESSION WITH PENALIZED SPLINE:THE SMOOTHING PARAMETER CHOICE AND ASYMPTOTICS
    童行伟
    胡涛
    崔恒建
    [J]. Acta Mathematica Scientia, 2010, 30 (05) : 1759 - 1768
  • [24] HAZARD REGRESSION WITH PENALIZED SPLINE: THE SMOOTHING PARAMETER CHOICE AND ASYMPTOTICS
    Tong Xingwei
    Hu Tao
    Cui Hengjian
    [J]. ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1759 - 1768
  • [25] Hazard regression for interval-censored data with penalized spline
    Cai, TX
    Betensky, RA
    [J]. BIOMETRICS, 2003, 59 (03) : 570 - 579
  • [26] Penalized solutions to functional regression problems
    Harezlak, Jaroslaw
    Coull, Brent A.
    Laird, Nan M.
    Magari, Shannon R.
    Christiani, David C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4911 - 4925
  • [27] Penalized versions of functional PLS regression
    Aguilera, A. M.
    Aguilera-Morillo, M. C.
    Preda, C.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 80 - 92
  • [28] Penalized spline models for functional principal component analysis
    Yao, F
    Lee, TCM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 3 - 25
  • [29] Functional PLS logit regression model
    Escabias, M.
    Aguilera, A. M.
    Valderrama, M. J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4891 - 4902
  • [30] Robust penalized regression spline fitting with application to additive mixed modeling
    Thomas C. M. Lee
    Hee-Seok Oh
    [J]. Computational Statistics, 2007, 22 : 159 - 171