Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation

被引:14
|
作者
Kuismin, Markku [1 ]
Sillanpaa, Mikko J. [1 ,2 ]
机构
[1] Univ Oulu, Dept Math Sci, Oulu, Finland
[2] Bioctr, Oulu, Finland
来源
PLOS ONE | 2016年 / 11卷 / 02期
关键词
COVARIANCE ESTIMATION; PRIOR DISTRIBUTIONS; SELECTION;
D O I
10.1371/journal.pone.0148171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A conjugate Wishart prior is used to present a simple and rapid procedure for computing the analytic posterior (mode and uncertainty) of the precision matrix elements of a Gaussian distribution. An interpretation of covariance estimates in terms of eigenvalues is presented, along with a simple decision-rule step to improve the performance of the estimation of sparse precision matrices and associated graphs. In this, elements of the estimated precision matrix that are zero or near zero can be detected and shrunk to zero. Simulated data sets are used to compare posterior estimation with decision-rule with two other Wishart-based approaches and with graphical lasso. Furthermore, an empirical Bayes procedure is used to select prior hyperparameters in high dimensional cases with extension to sparsity.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Sparse precision matrix estimation with missing observations
    Zhang, Ning
    Yang, Jin
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (03) : 1337 - 1355
  • [2] Sparse precision matrix estimation with missing observations
    Ning Zhang
    Jin Yang
    [J]. Computational Statistics, 2023, 38 : 1337 - 1355
  • [3] On estimation of the diagonal elements of a sparse precision matrix
    Balmand, Samuel
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1551 - 1579
  • [4] Algorithm 1042: Sparse Precision Matrix Estimation with SQUIC
    Eftekhari, Aryan
    Gaedke-Merzhauser, Lisa
    Pasadakis, Dimosthenis
    Bollhoefer, Matthias
    Scheidegger, Simon
    Schenk, Olaf
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2024, 50 (02):
  • [5] On the inconsistency of ℓ1-penalised sparse precision matrix estimation
    Otte Heinävaara
    Janne Leppä-aho
    Jukka Corander
    Antti Honkela
    [J]. BMC Bioinformatics, 17
  • [6] Fast and adaptive sparse precision matrix estimation in high dimensions
    Liu, Weidong
    Luo, Xi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 : 153 - 162
  • [7] NON-HERMITIAN EXTENSIONS OF WISHART RANDOM MATRIX ENSEMBLES
    Akemann, Gernot
    [J]. ACTA PHYSICA POLONICA B, 2011, 42 (05): : 901 - 921
  • [8] Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data
    Kubokawa, Tatsuya
    Srivastava, Muni S.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (09) : 1906 - 1928
  • [9] Sparse precision matrix estimation under lower polynomial moment assumption
    Miao, Li
    Wang, Jinru
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2925 - 2940
  • [10] On the inconsistency of l1-penalised sparse precision matrix estimation
    Heinavaara, Otte
    Leppa-aho, Janne
    Corander, Jukka
    Honkela, Antti
    [J]. BMC BIOINFORMATICS, 2016, 17