Sparse precision matrix estimation with missing observations

被引:1
|
作者
Zhang, Ning [1 ]
Yang, Jin [1 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Missing data; Inverse probability weighting; Gaussian graphical model; ADMM; OPTIMIZATION PROBLEMS; COVARIANCE ESTIMATION; VARIABLE SELECTION; GRAPHICAL LASSO; OPTIMALITY;
D O I
10.1007/s00180-022-01265-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sparse Gaussian graphical models have been extensively applied to detect the conditional independence structures from fully observed data. However, datasets with missing observations are quite common in many practical fields. In this paper, we propose a robust Gaussian graphical model with the covariance matrix being estimated from the partially observed data. We prove that the inverse of the Karush-Kuhn-Tucker mapping associated with the proposed model satisfies the calmness condition automatically. We also apply a linearly convergent alternating direction method of multipliers to find the solution to the proposed model. The numerical performance is evaluated on both the synthetic data and real data sets.
引用
收藏
页码:1337 / 1355
页数:19
相关论文
共 50 条
  • [1] Sparse precision matrix estimation with missing observations
    Ning Zhang
    Jin Yang
    [J]. Computational Statistics, 2023, 38 : 1337 - 1355
  • [2] Precision Matrix Estimation with Noisy and Missing Data
    Fan, Roger
    Jang, Byoungwook
    Sun, Yuekai
    Zhou, Shuheng
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [3] On estimation of the diagonal elements of a sparse precision matrix
    Balmand, Samuel
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1551 - 1579
  • [4] Maximum likelihood estimation of sparse networks with missing observations
    Gaucher, Solenne
    Klopp, Olga
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 215 : 299 - 329
  • [5] Bayesian Estimation of the Precision Matrix with Monotone Missing Data
    Ghorbel, Emna
    Kammoun, Kaouthar
    Louati, Mahdi
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (04) : 470 - 481
  • [6] Bayesian Estimation of the Precision Matrix with Monotone Missing Data
    Emna Ghorbel
    Kaouthar Kammoun
    Mahdi Louati
    [J]. Lithuanian Mathematical Journal, 2020, 60 : 470 - 481
  • [7] Algorithm 1042: Sparse Precision Matrix Estimation with SQUIC
    Eftekhari, Aryan
    Gaedke-Merzhauser, Lisa
    Pasadakis, Dimosthenis
    Bollhoefer, Matthias
    Scheidegger, Simon
    Schenk, Olaf
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2024, 50 (02):
  • [8] On the inconsistency of ℓ1-penalised sparse precision matrix estimation
    Otte Heinävaara
    Janne Leppä-aho
    Jukka Corander
    Antti Honkela
    [J]. BMC Bioinformatics, 17
  • [9] Fast and adaptive sparse precision matrix estimation in high dimensions
    Liu, Weidong
    Luo, Xi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 : 153 - 162
  • [10] High-dimensional covariance matrix estimation with missing observations
    Lounici, Karim
    [J]. BERNOULLI, 2014, 20 (03) : 1029 - 1058