Sparse precision matrix estimation with missing observations

被引:1
|
作者
Zhang, Ning [1 ]
Yang, Jin [1 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Missing data; Inverse probability weighting; Gaussian graphical model; ADMM; OPTIMIZATION PROBLEMS; COVARIANCE ESTIMATION; VARIABLE SELECTION; GRAPHICAL LASSO; OPTIMALITY;
D O I
10.1007/s00180-022-01265-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sparse Gaussian graphical models have been extensively applied to detect the conditional independence structures from fully observed data. However, datasets with missing observations are quite common in many practical fields. In this paper, we propose a robust Gaussian graphical model with the covariance matrix being estimated from the partially observed data. We prove that the inverse of the Karush-Kuhn-Tucker mapping associated with the proposed model satisfies the calmness condition automatically. We also apply a linearly convergent alternating direction method of multipliers to find the solution to the proposed model. The numerical performance is evaluated on both the synthetic data and real data sets.
引用
收藏
页码:1337 / 1355
页数:19
相关论文
共 50 条
  • [31] A GREEDY ALGORITHM FOR SPARSE PRECISION MATRIX APPROXIMATION
    Lv, Didi
    Zhang, Xiaoqun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (05): : 655 - 669
  • [32] Scene Labeling Using Sparse Precision Matrix
    Souly, Nasim
    Shah, Mubarak
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3650 - 3658
  • [33] Precision Matrix Estimation With ROPE
    Kuismin, M. O.
    Kemppainen, J. T.
    Sillanpaeae, M. J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 682 - 694
  • [34] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Guan Peng Wang
    Heng Jian Cui
    Acta Mathematica Sinica, English Series, 2021, 37 : 689 - 706
  • [35] On the theoretical guarantees for parameter estimation of Gaussian random field models: A sparse precision matrix approach
    Tajbakhsh, Sam Davanloo
    Aybat, Necdet Serhat
    Castillo, Enrique Del
    Journal of Machine Learning Research, 2020, 21
  • [36] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Guan Peng WANG
    Heng Jian CUI
    ActaMathematicaSinica,EnglishSeries, 2021, (05) : 689 - 706
  • [37] On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
    Tajbakhsh, Sam Davanloo
    Aybat, Necdet Serhat
    Del Castillo, Enrique
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [38] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Wang, Guan Peng
    Cui, Heng Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 689 - 706
  • [39] Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
    Dong, Wei
    Liu, Hongzhen
    MATHEMATICS, 2024, 12 (05)
  • [40] Gaussian Copula Precision Estimation with Missing Values
    Wang, Huahua
    Fazayeli, Farideh
    Chatterjee, Soumyadeep
    Banerjee, Arindam
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 978 - 986