Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models

被引:2
|
作者
Wang, Guan Peng [1 ]
Cui, Heng Jian [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed estimator; sparse precision matrix; high-dimensional; hard threshold; efficient communication; CONFIDENCE-INTERVALS;
D O I
10.1007/s10114-021-9553-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, distributed estimation of high-dimensional sparse precision matrix is proposed based on the debiased D-trace loss penalized lasso and the hard threshold method when samples are distributed into different machines for transelliptical graphical models. At a certain level of sparseness, this method not only achieves the correct selection of non-zero elements of sparse precision matrix, but the error rate can be comparable to the estimator in a non-distributed setting. The numerical results further prove that the proposed distributed method is more effective than the usual average method.
引用
收藏
页码:689 / 706
页数:18
相关论文
共 50 条
  • [1] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Guan Peng WANG
    Heng Jian CUI
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (05) : 689 - 706
  • [2] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Guan Peng Wang
    Heng Jian Cui
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 689 - 706
  • [3] High-dimensional precision matrix estimation with a known graphical structure
    Le, Thien-Minh
    Zhong, Ping-Shou
    [J]. STAT, 2022, 11 (01):
  • [4] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    [J]. STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [5] Estimation of high-dimensional vector autoregression via sparse precision matrix
    Poignard, Benjamin
    Asai, Manabu
    [J]. ECONOMETRICS JOURNAL, 2023, 26 (02): : 307 - 326
  • [6] Efficient Minimax Estimation of a Class of High-Dimensional Sparse Precision Matrices
    Chen, Xiaohui
    Kim, Young-Heon
    Wang, Z. Jane
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2899 - 2912
  • [7] Precision Matrix Estimation in High Dimensional Gaussian Graphical Models with Faster Rates
    Wang, Lingxiao
    Ren, Xiang
    Gu, Quanquan
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 177 - 185
  • [8] Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data
    Tugnait, Jitendra K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3363 - 3379
  • [9] Estimation of high-dimensional sparse cross correlation matrix
    Cao, Yin
    Seo, Kwangok
    Ahn, Soohyun
    Lim, Johan
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (06) : 655 - 664
  • [10] Sparse covariance matrix estimation in high-dimensional deconvolution
    Belomestny, Denis
    Trabs, Mathias
    Tsybakov, Alexandre B.
    [J]. BERNOULLI, 2019, 25 (03) : 1901 - 1938