Robust sparse precision matrix estimation for high-dimensional compositional data

被引:1
|
作者
Liang, Wanfeng [1 ]
Wu, Yue [1 ]
Ma, Xiaoyan [2 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
[2] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Precision matrix; High-dimensional compositional data; Centered log-ratio transformation; Sparsity; Huber robustness; COVARIANCE; CONVERGENCE; RATES;
D O I
10.1016/j.spl.2022.109379
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the rapid development in the high-dimensional compositional data analysis, an "Approximate-Plug " framework with theoretical justifications is proposed to provide robust precision matrix estimation for this kind of data under the sparsity assumption. To be specific, we first construct a Huber-robustness estimator ((gamma) over tilde)& nbsp;to approximate the centered log-ratio covariance matrix. Then we plug ((gamma) over tilde) into a constrained l1-minimization procedure to obtain the final estimator tilde ((omega) over tilde). Through imposing some mild conditions, we derive the convergence rate under the entrywise maximum norm and the spectral norm. Given that SpiecEasi in Kurtz et al. (2015) shares same routine with us but lacks of robustness and theoretical guarantees, simulation studies are conducted to show the privileges of our procedure. We also apply the proposed method on a real data. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data
    Serra, Angela
    Coretto, Pietro
    Fratello, Michele
    Tagliaferri, Roberto
    [J]. BIOINFORMATICS, 2018, 34 (04) : 625 - 634
  • [2] Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis
    Li, Danning
    Srinivasan, Arun
    Chen, Qian
    Xue, Lingzhou
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1090 - 1100
  • [3] Estimation of high-dimensional vector autoregression via sparse precision matrix
    Poignard, Benjamin
    Asai, Manabu
    [J]. ECONOMETRICS JOURNAL, 2023, 26 (02): : 307 - 326
  • [4] High-dimensional robust precision matrix estimation: Cellwise corruption under ε-contamination
    Loh, Po-Ling
    Tan, Xin Lu
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 1429 - 1467
  • [5] Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data
    Qian, Fang
    Chen, Yu
    Zhang, Weiping
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [6] ROBUST SHAPE MATRIX ESTIMATION FOR HIGH-DIMENSIONAL COMPOSITIONAL DATA WITH APPLICATION TO MICROBIAL INTER-TAXA ANALYSIS
    Li, Danning
    Srinivasan, Arun
    Xue, Lingzhou
    Zhan, Xiang
    [J]. STATISTICA SINICA, 2023, 33 : 1577 - 1602
  • [7] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Guan Peng Wang
    Heng Jian Cui
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 689 - 706
  • [8] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Wang, Guan Peng
    Cui, Heng Jian
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 689 - 706
  • [9] Efficient Distributed Estimation of High-dimensional Sparse Precision Matrix for Transelliptical Graphical Models
    Guan Peng WANG
    Heng Jian CUI
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (05) : 689 - 706
  • [10] A new robust covariance matrix estimation for high-dimensional microbiome data
    Wang, Jiyang
    Liang, Wanfeng
    Li, Lijie
    Wu, Yue
    Ma, Xiaoyan
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) : 281 - 295