Gaussian Copula Precision Estimation with Missing Values

被引:0
|
作者
Wang, Huahua [1 ]
Fazayeli, Farideh [1 ]
Chatterjee, Soumyadeep [1 ]
Banerjee, Arindam [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
SEMIPARAMETRIC ESTIMATION; COVARIANCE ESTIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of estimating sparse precision matrix of Gaussian copula distributions using samples with missing values in high dimensions. Existing approaches, primarily designed for Gaussian distributions, suggest using plugin estimators by disregarding the missing values. In this paper, we propose double plugin Gaussian (DoPinG) copula estimators to estimate the sparse precision matrix corresponding to non-paranormal distributions. DoPinG uses two plugin procedures and consists of three steps: (1) estimate nonparametric correlations based on observed values, including Kendall's tau and Spearman's rho; (2) estimate the non paranormal correlation matrix; (3) plug into existing sparse precision estimators. We prove that DoPinG copula estimators consistently estimate the non-paranormal correlation matrix at a rate of O((1/(1-delta)root log p/n) where S is the probability of missing values. We provide experimental results to illustrate the effect of sample size and percentage of missing data on the model performance. Experimental results show that DoPinG is significantly better than estimators like mGlasso, which are primarily designed for Gaussian data.
引用
收藏
页码:978 / 986
页数:9
相关论文
共 50 条
  • [1] Robust Estimation of Gaussian Copula Causal Structure from Mixed Data with Missing Values
    Cui, Ruifei
    Groot, Perry
    Heskes, Tom
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 835 - 840
  • [2] Learning causal structure from mixed data with missing values using Gaussian copula models
    Ruifei Cui
    Perry Groot
    Tom Heskes
    [J]. Statistics and Computing, 2019, 29 : 311 - 333
  • [3] EM algorithm in Gaussian copula with missing data
    Ding, Wei
    Song, Peter X. -K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 : 1 - 11
  • [4] Learning causal structure from mixed data with missing values using Gaussian copula models
    Cui, Ruifei
    Groot, Perry
    Heskes, Tom
    [J]. STATISTICS AND COMPUTING, 2019, 29 (02) : 311 - 333
  • [5] Estimation of missing values
    Herxenberg, LA
    Moore, WA
    De Rosa, SC
    [J]. LANCET, 1999, 354 (9179): : 686 - 686
  • [6] Missing Value Imputation for Mixed Data via Gaussian Copula
    Zhao, Yuxuan
    Udell, Madeleine
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 636 - 646
  • [7] Coal resource estimation using Gaussian copula
    Atalay, Firat
    Tercan, A. Erhan
    [J]. INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2017, 175 : 1 - 9
  • [8] Sparse Gaussian Graphical Model with Missing Values
    Uda, Shinsuke
    Kubota, Hiroyuki
    [J]. PROCEEDINGS OF THE 2017 21ST CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2017, : 336 - 343
  • [9] Semiparametric estimation of copula models with nonignorable missing data
    Guo, Feng
    Ma, Wei
    Wang, Lei
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (01) : 109 - 130
  • [10] Online Missing Value Imputation and Change Point Detection with the Gaussian Copula
    Zhao, Yuxuan
    Landgrebe, Eric
    Shekhtman, Eliot
    Udell, Madeleine
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9199 - 9207