Gaussian Copula Precision Estimation with Missing Values

被引:0
|
作者
Wang, Huahua [1 ]
Fazayeli, Farideh [1 ]
Chatterjee, Soumyadeep [1 ]
Banerjee, Arindam [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
SEMIPARAMETRIC ESTIMATION; COVARIANCE ESTIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of estimating sparse precision matrix of Gaussian copula distributions using samples with missing values in high dimensions. Existing approaches, primarily designed for Gaussian distributions, suggest using plugin estimators by disregarding the missing values. In this paper, we propose double plugin Gaussian (DoPinG) copula estimators to estimate the sparse precision matrix corresponding to non-paranormal distributions. DoPinG uses two plugin procedures and consists of three steps: (1) estimate nonparametric correlations based on observed values, including Kendall's tau and Spearman's rho; (2) estimate the non paranormal correlation matrix; (3) plug into existing sparse precision estimators. We prove that DoPinG copula estimators consistently estimate the non-paranormal correlation matrix at a rate of O((1/(1-delta)root log p/n) where S is the probability of missing values. We provide experimental results to illustrate the effect of sample size and percentage of missing data on the model performance. Experimental results show that DoPinG is significantly better than estimators like mGlasso, which are primarily designed for Gaussian data.
引用
收藏
页码:978 / 986
页数:9
相关论文
共 50 条
  • [31] Missing Values Estimation for Skylines in Incomplete Database
    Alwan, Ali
    Ibrahim, Hamidah
    Udzir, NurIzura
    Sidi, Fatimah
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2018, 15 (01) : 66 - 75
  • [32] Variance estimation with missing best values in the NIPRCS
    Nixon, MG
    Kalton, G
    Brick, JM
    EzzatiRice, T
    [J]. AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON SURVEY RESEARCH METHODS, VOLS I AND II, 1996, : 347 - 352
  • [33] Missing Values in Multiple Joint Inference of Gaussian Graphical Models
    Tozzo, Veronica
    Garbarino, Davide
    Barla, Annalisa
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 497 - 508
  • [34] Maximum likelihood estimation of Gaussian copula models for geostatistical count data
    Han, Zifei
    De Oliveira, Victor
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) : 1957 - 1981
  • [35] AN IMPORTANCE SAMPLING METHOD FOR PORTFOLIO CVaR ESTIMATION WITH GAUSSIAN COPULA MODELS
    Huang, Pu
    Subramanian, Dharmashankar
    Xu, Jie
    [J]. PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 2790 - 2800
  • [36] Bayesian Estimation of the Precision Matrix with Monotone Missing Data
    Ghorbel, Emna
    Kammoun, Kaouthar
    Louati, Mahdi
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (04) : 470 - 481
  • [37] Bayesian Estimation of the Precision Matrix with Monotone Missing Data
    Emna Ghorbel
    Kaouthar Kammoun
    Mahdi Louati
    [J]. Lithuanian Mathematical Journal, 2020, 60 : 470 - 481
  • [38] Gaussian Copula Embeddings
    Lu, Chien
    Peltonen, Jaakko
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] Maximum likelihood estimation in graphical models with missing values
    Didelez, V
    Pigeot, I
    [J]. BIOMETRIKA, 1998, 85 (04) : 960 - 966