TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS

被引:56
|
作者
Sullivant, Seth [1 ]
Talaska, Kelli [2 ]
Draisma, Jan [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Ctr Wiskunde & Informat, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 03期
基金
美国国家科学基金会;
关键词
Graphical model; Bayesian network; Gessel-Viennot-Lindstrom lemma; trek rule; linear regression; conditional independence;
D O I
10.1214/09-AOS760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that includes directed acyclic and undirected graphs as special cases. Our new trek separation criterion generalizes the familiar d-separation criterion. Proofs are based on the trek rule, the resulting matrix factorizations and classical theorems of algebraic combinatories on the expansions of determinants of path polynomials.
引用
收藏
页码:1665 / 1685
页数:21
相关论文
共 50 条
  • [41] Covariance decomposition in undirected Gaussian graphical models
    Jones, B
    West, M
    BIOMETRIKA, 2005, 92 (04) : 779 - 786
  • [42] Nonparametric Finite Mixture of Gaussian Graphical Models
    Lee, Kevin H.
    Xue, Lingzhou
    TECHNOMETRICS, 2018, 60 (04) : 511 - 521
  • [43] Discriminant analysis with Gaussian graphical tree models
    Gonzalo Perez-de-la-Cruz
    Guillermina Eslava-Gomez
    AStA Advances in Statistical Analysis, 2016, 100 : 161 - 187
  • [44] Adaptive Variable Clustering in Gaussian Graphical Models
    Sun, Siqi
    Zhu, Yuancheng
    Xu, Jinbo
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 931 - 939
  • [45] Edge exclusion tests for graphical Gaussian models
    Smith, PWF
    Whittaker, J
    LEARNING IN GRAPHICAL MODELS, 1998, 89 : 555 - 574
  • [46] Covariance Estimation in Decomposable Gaussian Graphical Models
    Wiesel, Ami
    Eldar, Yonina C.
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1482 - 1492
  • [47] SEMIBLIND SUBGRAPH RECONSTRUCTION IN GAUSSIAN GRAPHICAL MODELS
    Xie, Tianpei
    Liu, Sijia
    Hero, Alfred O., III
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 628 - 632
  • [48] Edge detection in sparse Gaussian graphical models
    Luo, Shan
    Chen, Zehua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 138 - 152
  • [49] COPULA GAUSSIAN GRAPHICAL MODELS WITH HIDDEN VARIABLES
    Yu, Hang
    Dauwels, Justin
    Wang, Xueou
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2177 - 2180
  • [50] OGM: Online gaussian graphical models on the fly
    Sijia Yang
    Haoyi Xiong
    Yunchao Zhang
    Yi Ling
    Licheng Wang
    Kaibo Xu
    Zeyi Sun
    Applied Intelligence, 2022, 52 : 3103 - 3117