TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS

被引:53
|
作者
Sullivant, Seth [1 ]
Talaska, Kelli [2 ]
Draisma, Jan [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Ctr Wiskunde & Informat, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 03期
基金
美国国家科学基金会;
关键词
Graphical model; Bayesian network; Gessel-Viennot-Lindstrom lemma; trek rule; linear regression; conditional independence;
D O I
10.1214/09-AOS760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that includes directed acyclic and undirected graphs as special cases. Our new trek separation criterion generalizes the familiar d-separation criterion. Proofs are based on the trek rule, the resulting matrix factorizations and classical theorems of algebraic combinatories on the expansions of determinants of path polynomials.
引用
下载
收藏
页码:1665 / 1685
页数:21
相关论文
共 50 条
  • [31] LEARNING GAUSSIAN GRAPHICAL MODELS USING DISCRIMINATED HUB GRAPHICAL LASSO
    Li, Zhen
    Bai, Jingtian
    Zhou, Weilian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2471 - 2475
  • [32] Model selection for inferring Gaussian graphical models
    De Canditiis, Daniela
    Cirulli, Silvia
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 6084 - 6095
  • [33] Gaussian graphical models with toric vanishing ideals
    Pratik Misra
    Seth Sullivant
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 757 - 785
  • [34] Structured regularization for conditional Gaussian graphical models
    Julien Chiquet
    Tristan Mary-Huard
    Stéphane Robin
    Statistics and Computing, 2017, 27 : 789 - 804
  • [35] On some algorithms for estimation in Gaussian graphical models
    Hojsgaard, S.
    Lauritzen, S.
    BIOMETRIKA, 2024,
  • [36] Graphical Gaussian models with edge and vertex symmetries
    Hojsgaard, Soren
    Lauritzen, Steffen L.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 1005 - 1027
  • [37] Gaussian graphical models with applications to omics analyses
    Shutta, Katherine H.
    De Vito, Roberta
    Scholtens, Denise M.
    Balasubramanian, Raji
    STATISTICS IN MEDICINE, 2022, 41 (25) : 5150 - 5187
  • [38] Nonparametric Finite Mixture of Gaussian Graphical Models
    Lee, Kevin H.
    Xue, Lingzhou
    TECHNOMETRICS, 2018, 60 (04) : 511 - 521
  • [39] Covariance decomposition in undirected Gaussian graphical models
    Jones, B
    West, M
    BIOMETRIKA, 2005, 92 (04) : 779 - 786
  • [40] Discriminant analysis with Gaussian graphical tree models
    Gonzalo Perez-de-la-Cruz
    Guillermina Eslava-Gomez
    AStA Advances in Statistical Analysis, 2016, 100 : 161 - 187