TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS

被引:56
|
作者
Sullivant, Seth [1 ]
Talaska, Kelli [2 ]
Draisma, Jan [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Ctr Wiskunde & Informat, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 03期
基金
美国国家科学基金会;
关键词
Graphical model; Bayesian network; Gessel-Viennot-Lindstrom lemma; trek rule; linear regression; conditional independence;
D O I
10.1214/09-AOS760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that includes directed acyclic and undirected graphs as special cases. Our new trek separation criterion generalizes the familiar d-separation criterion. Proofs are based on the trek rule, the resulting matrix factorizations and classical theorems of algebraic combinatories on the expansions of determinants of path polynomials.
引用
收藏
页码:1665 / 1685
页数:21
相关论文
共 50 条
  • [21] Graphical models of separation logic
    Wehrman, Ian
    Hoare, C. A. R.
    O'Hearn, Peter W.
    INFORMATION PROCESSING LETTERS, 2009, 109 (17) : 1001 - 1004
  • [22] Graphical models for sparse data: Graphical Gaussian models with vertex and edge symmetries
    Hojsgaard, Soren
    COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 105 - 116
  • [23] Maximum likelihood thresholds of Gaussian graphical models and graphical lasso
    Bernstein, Daniel Irving
    Outlaw, Hayden
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [24] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36
  • [25] Sparse Gaussian Graphical Models for Speech Recognition
    Bell, Peter
    King, Simon
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 1545 - 1548
  • [26] Learning Gaussian graphical models with latent confounders
    Wang, Ke
    Franks, Alexander
    Oh, Sang-Yun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [27] Exact test theory in Gaussian graphical models
    Bodnar, Olha
    Touli, Elena Farahbakhsh
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [28] Singular Gaussian graphical models: Structure learning
    Masmoudi, Khalil
    Masmoudi, Afif
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (10) : 3106 - 3117
  • [29] Distributed Covariance Estimation in Gaussian Graphical Models
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 211 - 220
  • [30] On a dualization of graphical Gaussian models: A correction note
    Banerjee, M
    Richardson, T
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (04) : 817 - 820