TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS

被引:53
|
作者
Sullivant, Seth [1 ]
Talaska, Kelli [2 ]
Draisma, Jan [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Ctr Wiskunde & Informat, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 03期
基金
美国国家科学基金会;
关键词
Graphical model; Bayesian network; Gessel-Viennot-Lindstrom lemma; trek rule; linear regression; conditional independence;
D O I
10.1214/09-AOS760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that includes directed acyclic and undirected graphs as special cases. Our new trek separation criterion generalizes the familiar d-separation criterion. Proofs are based on the trek rule, the resulting matrix factorizations and classical theorems of algebraic combinatories on the expansions of determinants of path polynomials.
引用
下载
收藏
页码:1665 / 1685
页数:21
相关论文
共 50 条
  • [21] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36
  • [22] Learning Gaussian graphical models with latent confounders
    Wang, Ke
    Franks, Alexander
    Oh, Sang-Yun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [23] On a dualization of graphical Gaussian models: A correction note
    Banerjee, M
    Richardson, T
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (04) : 817 - 820
  • [24] Exact test theory in Gaussian graphical models
    Bodnar, Olha
    Touli, Elena Farahbakhsh
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [25] Sparse Gaussian Graphical Models for Speech Recognition
    Bell, Peter
    King, Simon
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 1545 - 1548
  • [26] Singular Gaussian graphical models: Structure learning
    Masmoudi, Khalil
    Masmoudi, Afif
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (10) : 3106 - 3117
  • [27] Distributed Covariance Estimation in Gaussian Graphical Models
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 211 - 220
  • [28] Learning Latent Variable Gaussian Graphical Models
    Meng, Zhaoshi
    Eriksson, Brian
    Hero, Alfred O., III
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1269 - 1277
  • [29] Standard errors for the parameters of graphical Gaussian models
    Roverato, A
    Whittaker, J
    STATISTICS AND COMPUTING, 1996, 6 (03) : 297 - 302
  • [30] Conditional Matrix Flows for Gaussian Graphical Models
    Negri, Marcello Massimo
    Torres, Fabricio Arend
    Roth, Volker
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,