TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS

被引:56
|
作者
Sullivant, Seth [1 ]
Talaska, Kelli [2 ]
Draisma, Jan [3 ,4 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Ctr Wiskunde & Informat, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 03期
基金
美国国家科学基金会;
关键词
Graphical model; Bayesian network; Gessel-Viennot-Lindstrom lemma; trek rule; linear regression; conditional independence;
D O I
10.1214/09-AOS760
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that includes directed acyclic and undirected graphs as special cases. Our new trek separation criterion generalizes the familiar d-separation criterion. Proofs are based on the trek rule, the resulting matrix factorizations and classical theorems of algebraic combinatories on the expansions of determinants of path polynomials.
引用
收藏
页码:1665 / 1685
页数:21
相关论文
共 50 条
  • [1] Nested covariance determinants and restricted trek separation in Gaussian graphical models
    Drton, Mathias
    Robeva, Elina
    Weihs, Luca
    BERNOULLI, 2020, 26 (04) : 2503 - 2540
  • [2] On model misspecification and KL separation for Gaussian graphical models
    Jog, Varun
    Loh, Po-Ling
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1174 - 1178
  • [3] On perfectness in Gaussian graphical models
    Amini, Arash A.
    Aragam, Bryon
    Zhou, Qing
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [4] Tests for Gaussian graphical models
    Verzelen, N.
    Villers, F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (05) : 1894 - 1905
  • [5] On skewed Gaussian graphical models
    Sheng, Tianhong
    Li, Bing
    Solea, Eftychia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [6] Positivity for Gaussian graphical models
    Draisma, Jan
    Sullivant, Seth
    Talaska, Kelli
    ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (05) : 661 - 674
  • [7] On a dualization of graphical Gaussian models
    Kauermann, G
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (01) : 105 - 116
  • [8] Stratified Gaussian graphical models
    Nyman, Henrik
    Pensar, Johan
    Corander, Jukka
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (11) : 5556 - 5578
  • [9] Proper Quaternion Gaussian Graphical Models
    Sloin, Alba
    Wiesel, Ami
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5487 - 5496
  • [10] DIRECTIONAL TESTS IN GAUSSIAN GRAPHICAL MODELS
    Di Caterina, Claudia
    Reid, Nancy
    Sartori, Nicola
    STATISTICA SINICA, 2025, 35 (01) : 361 - 387